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Abstract— An adaptive neural network (NN) control is pro-
posed for an unknown two-degree of freedom (2-DOF) helicopter
system with unknown backlash-like hysteresis and output con-
straint in this study. A radial basis function NN is adopted to
estimate the unknown dynamics model of the helicopter, adaptive
variables are employed to eliminate the effect of unknown
backlash-like hysteresis present in the system, and a barrier
Lyapunov function is designed to deal with the output constraint.
Through the Lyapunov stability analysis, the closed-loop system
is proven to be semiglobally and uniformly bounded, and the
asymptotic attitude adjustment and tracking of the desired set
point and trajectory are achieved. Finally, numerical simulation
and experiments on a Quanser’s experimental platform verify
that the control method is appropriate and effective.

Index Terms— Adaptive neural network (NN) control, output
constraint, two-degree of freedom (2-DOF) helicopter, unknown
backlash-like hysteresis.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have attracted wide-
spread attention with the continuous development of
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science and technology [1]–[4]. Helicopters, as a typical
UAV, have the advantages of flexible flight, strong adaptabil-
ity, hovering flight, and so on and are widely used in air
transportation, detection rescue, aviation mapping, and other
fields [5], [6]. However, the helicopter system is a highly cross-
coupled multi-input–multioutput (MIMO) nonlinear system
involving complex dynamics, which makes the robust control
design of the helicopter system more complicated [7]–[9].
Therefore, it is necessary to establish an effective control
strategy to maintain the robustness and stability of helicopter
systems.

Over the past decade, researchers have proposed a vari-
ety of control techniques for a stable control of helicopter
systems [10]–[15]. For instance, in [11], a sliding mode
control (SMC) based on a high-order disturbance observer was
proposed and validated on a two-degree of freedom (2-DOF)
helicopter. Chun et al. [12] proposed a new Q-learning algo-
rithm to solve the unknown discrete-time linear quadratic
regulation (LQR) adjustment problem and demonstrated the
effectiveness of the approach on 2-DOF helicopter systems.
In [13], for a 2-DOF helicopter system subjected to external
interferences and uncertainties, the authors proposed an adap-
tive LQR algorithm. Furthermore, in [15], a flight controller
was designed to track and control the model-based helicopter
system. Note that, in the previous research, the nonlinear
dynamics of the helicopter was linearized and the nonlinear
term and uncertainties of the helicopter system were ignored,
which may make the helicopter system unstable in practical
applications. Therefore, it is necessary to incorporate the
nonlinear dynamics of the helicopter system when designing
a high-performance controller. For the helicopter’s nonlin-
ear dynamics, the researchers investigated a large number
of control methods [16]–[18]. Raptis et al. [16] designed a
backstepping control strategy to track the desired position and
attitude of a 2-DOF helicopter. In [17], an SMC strategy with
a generalized proportional integral observer was developed
for 2-DOF helicopters influenced by extrinsic disturbances.
Anis and Tarek [18] proposed a generalized robust predictive
control and verified the reliability of the algorithm on a
2-DOF helicopter platform. However, the above research only
considered that the nonlinear dynamics of the helicopter were
accurately known and did not consider the case that some
model parameters of the helicopter system are unknown and
uncertain in the actual situation.
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In recent years, the research on the uncertainties of nonlin-
ear systems has received extensive attention from researchers.
Neural networks (NNs) have good approximation capabilities
and are typically and commonly used tools to deal with
system uncertainties [19]–[23]. For example, for 3-DOF heli-
copter systems with unknown dynamics model and subject
to external perturbations, Yang and Zheng [24] proposed a
backstepping control based on NN. In [25], for an unmanned
helicopter system subjected to unknown internal and external
disturbance, the authors proposed an adaptive NN active
antidisturbance control strategy. In [26], for quadrotor UAVs
with external disturbances and actuator failures, the authors
proposed an NN fault-tolerant control. In [27], for a quadrotor
UAV system with only position and attitude measurement, the
authors proposed a novel output feedback NN control strategy.
Nodland et al. [28] proposed a new high-performance NN
optimal control for output feedback trajectory tracking of
unmanned helicopter systems.

On the other hand, hysteresis is widely present in many
practical electronic equipment actuator systems. The exis-
tence of hysteresis may degrade the performance of actuators,
increase the error of the system or oscillation, and result
in system instability [29]–[31]. Therefore, when designing
system controllers, it has always been a research hotspot to
decrease the effect of hysteresis. Moreover, the backlash-like
hysteresis has good hysteresis nonlinear characteristics, which
is conducive to the controller design [32], [33]. In recent
years, many constructive control schemes have been proposed
for nonlinear systems with unknown backlash-like hystere-
sis [34]–[40]. In [35], an adaptive NN control scheme was
proposed for stochastic nonlinear systems with backlash-like
hysteresis. In [36], considering the existence of state con-
straints and hysteresis in single-input–single-output nonlinear
systems, the authors developed an adaptive control strategy in
combination with backstepping control. In [38], for a type of
flexible manipulator system with actuator failure, backlash-like
hysteresis, and external environmental interference, a bound-
ary adaptive fault-tolerant control was proposed. In [40],
a Nussbaum gain technique was utilized to address the effect
of unknown hysteresis in the system and an adaptive NN
control technique was proposed. Although the above research
on backlash-like hysteresis has made remarkable progress,
there is no research on the 2-DOF helicopter nonlinear system
with unknown backlash-like hysteresis.

Generally, there are various constraints in the actual
control system, such as state constraints and output
constraints [41]–[43]. If these constraints are ignored when
designing the control, it may decrease the system’s stability
and even cause serious accidents [44]–[47]. Therefore, the
researchers have proposed many effective control methods to
address the system’s constraints in recent years. For example,
in [48], to solve the asymmetric full-state constraints in MIMO
nonlinear systems, the authors designed an effective robust
adaptive dynamic surface control. It is worth noting that,
to resolve the output constraint in nonlinear systems, the
use of a barrier Lyapunov function (BLF) is an effective
method [49]. The BLF in [50] was first used to solve the
output constraints of nonlinear systems. Zhao and Song [51]

proposed a new robust adaptive control strategy to address the
constraints in the conventional BLF or integral BLF control
for a strict feedback nonlinear systems with full-state con-
straints depending on a virtual controller. Zhao and Chen [52]
constructed a novel potential function to solve the asym-
metric time-varying output constraint in MIMO nonlinear
systems. Zhao et al. [53] proposed a new adaptive control
strategy based on a generic potential function for solving
asymmetric output constraints in pure feedback nonlinear
systems. In the actual 2-DOF helicopter nonlinear system,
the helicopter’s movement is restricted by the environment,
that is, the output of the helicopter is restricted. If the above
limitations are not considered, the helicopter system may
be unstable. Therefore, it is necessary to consider the issue
of helicopter’s output constraints, use a BLF to limit the
output of the system to a fixed range, and at the same
time guarantee that the system’s tracking errors converge
near zero.

Based on the analysis and summary of the above literature,
we intend to establish an adaptive NN control for the 2-DOF
helicopter nonlinear system with unknown backlash-like hys-
teresis and output constraints in this study. The main contri-
butions are given as follows.

1) The backlash-like hysteresis is considered for the first
time in a 2-DOF helicopter system, and adaptive vari-
ables with an adaptive NN control are developed to
tackle the unknown hysteresis, eliminate the uncertain-
ties, and improve the robustness of the system.

2) Using the BLF technology to constrain the output of the
2-DOF helicopter system, the system’s tracking errors
are ensured to converge near zero.

3) The control algorithm is tested on a Quanser’s 2-DOF
helicopter experimental platform, and the experimental
results obtained verify the feasibility and effectiveness
of the proposed control strategy.

The remaining chapters of this article are given as follows.
In Section II, the helicopter system model, the backlash-
like hysteresis, and some preliminary lemmas are introduced.
Section III introduces the controller design. Section IV sim-
ulates and verifies the proposed controller. In Section V,
we conduct an experimental verification and the results are
given. Section VI gives a summary.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Fig. 1 shows a 2-DOF helicopter model diagram [54]. It can
be seen from the figure that the horizontally placed propeller
will generate a torque around the Y -axis and get a pitch angle
θ , and the vertically placed propeller will produce a torque
around the Z -axis and get a yaw angle φ. In the 2-DOF
helicopter system, the outputs are the pitch and yaw angles,
and the input is the voltage in the dc motor that controls the
pitch and yaw angles.

According to the Lagrangian mechanical modeling,
the nonlinear dynamic equations of the system
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Fig. 1. 2-DOF helicopter model diagram.

are formulated as follows:
�
Jp + Mal2

n

�
θ̈ = K ppVp + K py Vy − Ma gln cos θ

− Dp θ̇ − Malnφ̇
2 sin θ cos θ (1)�

Jy + Mal2
ncos2 θ

�
φ̈ = KypVp + KyyVy − Dy φ̇

+ 2Mal2
n φ̇θ̇ sin θ cos θ (2)

where θ and φ are the pitch and yaw angles, respectively,
g represents the acceleration of gravity, Dp and Dy denote
the viscous friction coefficients of the pitch and yaw axes,
respectively, Jp and Jy are the rotational inertia around the
pitch and yaw axes, respectively, ln denotes the length of the
helicopter, Ma indicates the weight of the helicopter, and K pp,
K py , Kyp, and Kyy are the thrust torque constants generated
by the helicopter system [54].

Define x = [x1, x2]T , x1 = [θ, φ]T , and x2 = [θ̇ , φ̇]T .
Considering the backlash-like hysteresis and output constraints
of the system, we convert the 2-DOF helicopter system into
an MIMO system, which yields

ẋ1 = x2 (3)

ẋ2 = F(x)+�F(x)

+ (G(x)+�G(x))�(u) (4)

y = x1 (5)

where u = [Vp, Vy] denotes the control input, �F(x) and
�G(x) are system uncertainties, and �(u) represents the
output of the backlash-like hysteresis. F(x) and G(x) are
given as

F(x)=

⎡
⎢⎢⎢⎣

−Ma gln cos(x11)−Dpx21−Mal2
n x2

12 sin(x11) cos(x11)

Jp + Mal2
n

−Dy x22 + 2Mal2
n x22x21 sin(x11) cos(x11)

Jy + Mal2
n cos2(x11)

⎤
⎥⎥⎥⎦

(6)

G(x)=

⎡
⎢⎢⎣

K pp

Jp + Mal2
n

K py

Jp + Mal2
n

Kyp

Jy + Mal2
n cos2(x11)

Kyy

Jy + Mal2
n cos2(x11)

⎤
⎥⎥⎦. (7)

Fig. 2. Hysteresis curve.

Property [55]: The hysteresis-type nonlinearity is defined
as

d�(u)

dt
= kl





du

dt





[pdu −�(u)] + kv
du

dt
(8)

where kl, pd , and kv are constants, which satisfy pd > 0 and
pd > kv . According to [55], (8) can be expressed as

�i (ui) = pdi ui + hi(ui ), i = 1, 2 (9)

hi (ui) = (�0i − pdi u0i )e
−kli (ui −u0i )sgn(u̇i )

+ e−kli ui sgn(u̇i )

� ui

u0i

(kvi − pdi)e
kli ζ j sgn(u̇i ) dζ j (10)

where �0i and u0i are the initial values of �i and ui ,
respectively. This shows that (8) can be used to represent the
backlash-like hysteresis shown in Fig. 2, where kl = 1, pd =
3.1635, kv = 0.345, and u(t) = 5.5 sin(2.3t). According
to [55], hi (ui) is bounded, |hi (ui)| ≤ h∗

i with h∗
i > 0,

i = 1, 2, . . . , n. The backlash-like hysteresis nonlinearity
�(u) can also be expressed as

�(u) = Pd u + H (u) (11)

where Pd = diag[pd1, pd2] with Pd > 0 and H (u) =
[h1(u1), h2(u2)]T . H (u) is bounded, i.e., �H (u)� ≤ H ∗ and
H ∗ = (h∗

1
2 + h∗

2
2)1/2.

Assumption 1 [55]: The slope of the backlash-like hysteresis
Pd is unknown, and there exists an unknown constant c such
that pd1 = pd2 = c.

Remark 1: Since Pd is the slope of backlash-like hys-
teresis and, in practical situations, the slope of backlash-like
hysteresis is often unknown and upper bounded, to solve
the backlash-like hysteresis problem in helicopter systems,
we consider the case that the slope of hysteresis has the
upper bounded maximum value c. In this way, we have
Pd = diag[pd1, pd2] = cdiag[I ]2×2.

Substituting (11) into (4) and then from Remark 1, we derive

ẋ2 = F(x)+�F(x)+ (G(x)+�G(x))(cu + H (u))

= F(x)+�F(x)+ cG(x)u + G(x)H (u)

+�G(x)(cu + H (u)). (12)

In order to avoid the situation that the inverse matrix of the
control gain coefficient G(x) may not exist in the system,
we propose u = GT (x)η, where η is an ideal control input
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signal. Therefore, (12) can be rewritten as

ẋ2 = F(x)+�F(x)+ cG(x)GT (x)η + G(x)H (u)

+�G(x)(cu + H (u))

= F(x)+ c
�
G(x)GT (x)+ γ I2×2

�
η − γ I2×2η

+�F(x)+�G(x)(cu + H (u))+ G(x)H (u)

= F(x)+ c
�
G(x)GT (x)+ γ I2×2

�
η + P(x, u)+ D(x, u)

(13)

where P(x, u) = −γ I2×2η + �F(x) + �G(x)(cu + H (u))
and 	(x, u) = G(x)H (u).

B. Preliminaries

Assumption 2: There exists an unknown positive constant
G∗ satisfying �G� ≤ G∗.

Lemma 1 [56]: For Lyapunov function V (t), if the initial
value V (0) is bounded, then V (t) is positive definite and
continuous. The following inequality is presented:

V̇ (t) ≤ −ςV (t)+ C1 (14)

where ς > 0 and C1 > 0.
Lemma 2 [57]: For the interval |z(t)| ≤ q , ∀t ∈ [0,+∞)

with q being any positive constant, the following inequality
holds:

log
q2

q2 − z2
≤ z2

q2 − z2
. (15)

Lemma 3 [58]: For any μ ∈ R and ι > 0, the inequality
0 ≤ |μ| − μ tanh(μ/ι) ≤ 0.2785ι holds.

C. Neural Networks

Since the radial basis function NN (RBFNN) has the advan-
tages of local approximation, fast learning speed, and avoiding
local minimum problem, we use the following the RBFNN to
estimate the unknown nonlinear function in 2-DOF helicopter
systems. For nonlinear functions f (X), Rm → R, we have

f (X) = W T O(X) (16)

where X ∈ �a ⊂ Rm is the RBFNN input vector, �a is a
compact set, W = [W1,W2, . . . ,Wq ]T ∈ Rq is the unknown
ideal weight vector, q > 1 denotes the node number in the
hidden layer, and O(X) = [O1(X), O2(X), . . . , Oq (X)]T .
O j (X) is a neuron activation function that is composed of
RBF [59]

O j (X)=exp

�
−�

X −c j
�T �

X −c j
�

b j
2


, j =1, 2, . . . , q (17)

where c j = [c j1, c j2, . . . , c jm]T is the center vector of the j th
hidden layer neuron and b j is the width vector of Gaussian
function. In addition, the RBFNN can approximate a continu-
ous function on a tight set to an arbitrary accuracy as follows:

f (X) = W ∗T O(X)+ ρ(X), �ρ� ≤ ρ∗ (18)

where W ∗T is an ideal weight vector, ρ(X) is the error
approximation term, and ρ∗ is a positive constant. W ∗ is
defined as

W ∗ = arg min
W∈Rq

�
sup

X∈�a





 f (x)− W T H (X)




�. (19)

III. CONTROL DESIGN

Considering |hi(ui )| ≤ h∗
i with h∗

i > 0 and then according
to Assumption 2, we can conclude that �	� ≤ 	 ∗ with 	 ∗
being an unknown constant.

Define an error variable as

z1 = x1 − xd (20)

where xd = [θd, φd ] ∈ R2 is an desired trajectory. The
derivative of the position error yields

ż1 = ẋ1 − ẋd . (21)

Then, define the second error variable as

z2 = x2 − α (22)

with α being the virtual controller of the system.
The time derivative of z2 is given as

ż2 = ẋ2 − α̇. (23)

Consider the following BLF:

VBLF = 1

2

2�
i=1

log
q2

i

q2
i − z2

1i

. (24)

Based on (21), the time derivative of V1 gives

V̇BLF =
2�

i=1

z1i ż1i

q2
i − z2

1i

=
2�

i=1

z1i (x2i − ẋdi )

q2
i − z2

1i

=
2�

i=1

z1i (z2i + αi − ẋdi )

q2
i − z2

1i

. (25)

A virtual controller is designed as follows:
αi = −ki z1i + ẋdi , i = 1, 2 (26)

where ki , i = 1, 2, are the design parameters.
Substitution of (26) into (25) yields

V̇BLF =
2�

i=1

z1i z2i − ki z2
1i

q2
i − z2

1i

. (27)

Consider the following Lyapunov function candidate as

V1 = VBLF + 1

2
zT

2 z2. (28)

The time derivative of V1 leads to

V̇1 = V̇BLF + zT
2 ż2. (29)
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By substituting (13), (23), and (27) into (29), we have

V̇1 = V̇BLF + zT
2 (ẋ2 − α̇)

=
2�

i=1

z1i z2i − ki z2
1i

q2
i − z2

1i

+ zT
2

�
F(x)+ c

�
G(x)GT + γ I2×2

�
η

+ P(x, u)+	 − α̇
�
. (30)

Define ω = (1/c) with ω being an unknown constant. Since
the function P(x, u) is unknown and uncertain, we can use
RBFNN to estimate it. Thus, we obtain

P(x, u) = W ∗T O(X)+ ρ(X) (31)

where W ∗ is an ideal weight, O(X) contains the activation
function, X = [x1, x2, xd, ẋd ] is the input of the NNs, and
ρ(X) is an approximation error satisfying �ρ(X)� ≤ ρ∗ with
ρ∗ > 0 being an unknown constant. Moreover, the estimated
weight is defined as Ŵ with the weight error W̃ = Ŵ − W ∗.
We propose the controller as

η = ω̂
�
G(x)GT (x)+ γ I2×2

�−1
ψ (32)

ψ = −F(x)− K2z2 −

⎡
⎢⎢⎣

z11

q2
1 − z2

11

z12

q2
2 − z2

12

⎤
⎥⎥⎦ − Ŵ T O(X)

− tanh

�
z2

b1

�
	̂ ∗ + α̇. (33)

According to the backlash-like hysteresis, �(u) = Pd u+H (u)
in Property 1, where H (u) is an approximation error. In order
to eliminate the effect of hysteresis error and enhance the
control accuracy of the system, we construct an adaptive
variable 	̂ ∗ to compensate for the approximation error H (u).

We define 	̃ ∗ = 	 ∗ − 	̂ ∗ and ω̃ = ω − ω̂. Then, the
updating laws of ˙̂W , ˙̂	 ∗, and ˙̂ω are designed as

˙̂W = �w
�
O(X)zT

2 − ηwŴ
�

(34)

˙̂	 ∗ = �	

�
zT

2 tanh

�
z2

b1

�
− η	 	̂

∗
�

(35)

˙̂ω = −�ω
�
zT

2 ψ + ηωω̂
�

(36)

where �w = �T
w ∈ Rn×n , �	 > 0, and �ω > 0. Also, ηw, η	 ,

and ηω are small positive constants.
Substituting (31)–(33) into (30), we have

V̇1 =
2�

i=1

z1i z2i −ki z2
1i

q2
i −z2

1i

+zT
2

�
F(x)+c

�
1

c
−ω̃

�
ψ+W ∗T O(X)

+ ρ +	 − α̇

�
− cω̃ψ

=
2�

i=1

z1i z2i − ki z2
1i

q2
i − z2

1i

− zT
2 W̃ T O(X)+ zT

2 ρ + zT
2	

− zT
2 tanh

�
z2

b1

�
	̂−zT

2 K2z2−zT
2

⎡
⎢⎢⎣

z11

q2
1 − z2

11

z12

q2
2 − z2

12

⎤
⎥⎥⎦−czT

2 ω̃ψ

= −
2�

i=1

ki z2
1i

q2
i − z2

1i

− zT
2 W̃ T O(X)+ zT

2 ρ + zT
2 	

− zT
2 tanh

�
z2

b1

�
	̂ ∗ − zT

2 K2z2 − czT
2 ω̃ψ. (37)

Consider the following inequalities:

zT
2	 ≤ 	 ∗

2�
i=1

|z2i | (38)

zT
2 tanh

�
z2

b1

�
=

2�
i=1

�
z2i tanh

�
z2i

b1

��
. (39)

Invoking Lemma 2, we obtain
2�

i=1

|z2i | −
2�

i=1

�
z2i tanh

�
z2i

b1

��
≤ 0.557b1. (40)

We then consider the Lyapunov candidate equation as

V2 = V1 + tr

�
1

2
W̃ T�−1

w W̃

�
+ 1

2�	
	̃ ∗2 + c

2�ω
ω̃2 (41)

where tr{·} denotes a trace operation of a matrix. From (41),
we known that V2 is a function of the variables z1, z2, W , 	 ∗,
and ω.

Substituting (34)–(36) into V̇2 leads to

V̇2 = V̇1 + tr
�
W̃ T O(X)zT

2

� − ηwtr
�
W̃ T Ŵ

�
− zT

2 tanh

�
z2

b1

�
	̃ ∗+η		̃ ∗	̂ ∗+cω̃zT

2 ψ+ηωω̃ω̂. (42)

Substituting (37) and (40) into (42), we have

V̇2 ≤ −
2�

i=1

ki z2
1i

q2
i − z2

1i

+ zT
2 ρ + 0.557b1	

∗ − zT
2 K2z2

− ηwtr
�
W̃ T Ŵ

� + η	 	̃
∗	 ∗ − η		̃

∗2 + ηωω̃ω − ηωω̃
2

(43)

where zT
2 ρ ≤ (1/2)zT

2 z2 + (1/2)ρ∗2.
Employing Young’s inequality results in

−ηwtr
�
W̃ T Ŵ

� ≤ −ηw
2

�W̃�2
F + ηw

2
�W ∗�2

F (44)

η		̃
∗	 ∗ ≤ 1

σ1
η		̃

∗2 + σ1η		
∗2 (45)

ηωω̃ω ≤ 1

σ2
ηωω̃

2 + σ2ηωω
2 (46)

where � · � is the Frobenius norm of a vector or a matrix.
Substituting (44)–(46) into (43), we derive

V̇2 ≤ −
2�

i=1

ki z2
1i

q2
i − z2

1i

+ 1

2
zT

2 z2 + 1

2
ρ∗2 − zT

2 K2z2

− ηw

2
�W̃�2

F + ηw
2

�W ∗�2
F −

�
1− 1

σ1

�
η		̃

∗2+σ1η		
∗2

−
�

1 − 1

σ2

�
ηωω̃

2 + σ2ηωω
2 + 0.557b1	

∗ (47)

where σ1 and σ2 are design parameters.
According to Lemmas 1 and 2, we obtain

V̇2 ≤ −
2�

i=1

ki log
z2

1i

q2
i − z2

1i

− zT
2

�
K2 − 1

2
I

�
z2 − ηw

2
�W̃�2

F

−
�

1 − 1

σ1

�
η		̃

∗2 −
�

1 − 1

σ2

�
ηωω̃

2 + 1

2
ρ∗2

+ ηw

2
�W ∗�2

F + σ1η		
∗2 + σ2ηωω

2 + 0.557d1	
∗

≤ ςV2 +� (48)
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where

ς = min

�
2 min(ki), 2λmin

�
K2 − 1

2
I

�
,

2ηw
λmax

�
�−1
w

� ,
2�	η	λmin

�
1 − 1

σ1

�
, 2�ωηωλmin

�
1 − 1

σ2

�

(49)

� = 1

2
ρ∗2 + ηw

2
�W ∗�2

F + σ1η		
∗2 + σ2ηωω

2 + 0.557b1	
∗

(50)

with

min(ki ) > 0, λmin

�
K2 − 1

2
I

�
> 0�

1 − 1

σ1

�
> 0,

�
1 − 1

σ2

�
> 0. (51)

Theorem: For the 2-DOF helicopter system given by (1) and
(2), with the application of the presented NN controllers (32)
and (33), and adaptive updating laws (34)–(36), we conclude
that z1, z2, W , 	 ∗, and ω are semiglobally bounded. In addi-
tion, the tracking errors z1 and z2 and approximation errors
W̃ , 	̃ ∗, and ω̃ converge to their respective compact sets �z1 ,
�z2 , �W̃ , �	̃ ∗ , and �ω̃, respectively, defined as

�z1 =
�

z1 ∈ R2





|z1i | ≤
�

q2
i

�
1 − e−���

(52)

�z2 =
�

z2 ∈ R2



�z2� ≤ √

�
�

(53)

�W̃ =
�

W̃ ∈ Rq×2






�W̃� ≤
�

�

λmin
�
�−1
w

�
�

(54)

�	̃ ∗ =
�
	̃ ∗






	̃ ∗

 ≤ �
�	�

�
(55)

�ω̃ =
�
ω̃




|ω̃| ≤ �
�ω�

�
(56)

where � = 2(V2(0) + (�/ς)), and ς and � are defined in
(49) and (50), respectively.

Proof: Multiplying (48) by eς t yields

d

dt

�
V3eς t

� ≤ �eς t . (57)

Integrating (57), we obtain

V2 ≤
�

V2(0)− �

ς

�
e−ς t + |z1i |

ς
. (58)

Thus, for z1, we obtain

1

2
log

q2
i

q2
i − z2

1i

≤ V3(0)+ |z1i |
ς

|z1i | ≤
�

q2
i

�
1 − e−��

. (59)

Similarly, for z2, W̃ , 	̃ ∗, and ω̃, we further have

�z2� ≤ √
� (60)

�W̃� ≤
�

�

λmin
�
�−1
w

� (61)

|	̃ ∗| ≤ �
�	� (62)

|ω̃| ≤ �
�ω�. (63)

TABLE I

SYSTEM PARAMETERS

Remark 2: In this study, for the backlash-like hysteresis
�(u) = Pd u + H (u), H (u) is an approximation error. The
adaptive NN controller proposed uses an adaptive variable 	̂ ∗
to compensate for H (u). The effect of backlash-like hysteresis
can be reduced, thus improving the control accuracy of the
system.

Remark 3: In [27] and [28], an NN output feedback control
was employed to stabilize the UAV system with the position
and attitude measurement. Different from [27] and [28], this
study aims to address the hysteresis and output constraint in
the 2-DOF helicopter system. The adaptive variable 	̂ ∗ is used
to deal with the hysteresis and the BLF is employed to resolve
the output constraint presented in the system.

IV. NUMERICAL SIMULATION

In this section, the presented algorithms are verified through
simulation examples of a Quanser’s 2-DOF helicopter system.
Table I shows the parameters of the Quanser’s laboratory
platform used in the simulation.

The initial values of the angles are chosen as x1 = [0, 0]T,
and then, the desired tracking trajectory is set as xd =
[(5π/36) sin(t), (π/18) sin(t)]T.

The initial values of the weights in the NN are zero. The
detailed control parameters are designed as k1 = 50, k2 = 50,
K2 = diag[60, 60], γ = 1, �w = 64I64×64, �	 = 15, �ω =
15, ηw = 0.2, η	 = 0.1, and ηω = 0.1. The parameters of
the hysteresis-type nonlinearity are designed as kl = 1, pd =
3.1635, and kv = 2. The bound of the tracking error is selected
as q = [0.09, 0.03]T .

A. Case 1: Under the Proposed Control Scheme

The numerical simulation results are shown in
Fig. 3(a) and (d). It can be seen from Fig. 3(a) and (b) that
x11 and x12 can fully track their desired trajectories. Fig. 3(c)
shows the tracking errors of the system. Fig. 3(d) represents
the control input of the system. In addition, it is evident from
Fig. 3(a) and (b) that the controller design does not violate
the output constraints. From Fig. 3(c), we find that the error
of the system converges to a very small range near zero and
the stability of the system is better. Therefore, the control
algorithm designed in this study is effective for trajectory
tracking control of a helicopter system with backlash-like
hysteresis and output constraints.

B. Case 2: Under the Proposed Control Scheme Without
Backlash-Like Hysteresis Compensation

This case demonstrates the simulation results without
backlash-like hysteresis compensation in the algorithm pro-
posed in this article. The design parameters required in this

Authorized licensed use limited to: Pusan National University Library. Downloaded on August 18,2022 at 03:44:38 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: ADAPTIVE NN CONTROL OF UNCERTAIN 2-DOF HELICOPTER 7

Fig. 3. Under the proposed control scheme. (a) Tracking performance of x11.
(b) Tracking performance of x12. (c) Tracking errors: z11 and z12. (d) Control
input u.

Fig. 4. Under the proposed control scheme without backlash-like hysteresis
compensation. (a) Tracking performance of x11. (b) Tracking performance of
x12. (c) Tracking errors: z11 and z12. (d) Control input u.

case are the same as in Case 1. Fig. 4(a) and (b) shows the
tracking response of the system between the output variables
and the desired trajectory, and in addition, it can be seen
that the output variables do not violate the output constraint.
Fig. 4(c) shows the tracking error response of the system.
Fig. 4(d) represents the control inputs of the system.

Compared with Case 1, the output variables in Case 2 do
not track the desired trajectory and the tracking error is larger.
In addition, the control input of the system oscillates at the
beginning of the period, making the input of the system
unstable.

V. EXPERIMENTAL RESULTS

To further verify the effectiveness of the proposed controller,
we conducted experiments on a Quanser’s 2-DOF helicopter
platform in Fig. 5. Moreover, in practice, the input range of
the two voltages of the 2-DOF helicopter is [−24, + 24 V].

A. Case 1: Under the Proposed Control Scheme

In this case, we validate the control algorithm proposed in
this article. Fig. 6(a) and (b) shows the tracking effects of

Fig. 5. Experiment setup.

Fig. 6. Under the proposed control scheme. (a) Tracking performance of x11.
(b) Tracking performance of x12. (c) Tracking errors: z11 and z12. (d) Control
input u.

the output variables of the system with respect to the desired
trajectories. Fig. 6(c) shows the tracking error response of
the system. Fig. 6(d) shows the motor voltage input of the
helicopter system. The experimental results show that under
the action of this controller, the output variables of the system
can meet the tracking requirements with a smaller tracking
error, and the input of the system also has a good trajectory
response, which proves the effectiveness and rationality of the
control strategy proposed in this study.

B. Case 2: Under the Proposed Control Scheme Without
Backlash-Like Hysteresis Compensation

In this case, the backlash-like hysteresis compensation
is not considered in the control strategy proposed in this
study, and the experimental results obtained are shown in
Fig. 7(a) and (d). Fig. 7(a) and (b) shows the performance of
x11 and x12 of the desired trajectory tracking, and Fig. 7(c)
shows the tracking error of the system. Fig. 7(d) shows the
control input of the system.

As can be seen in Fig. 7(a) and (b), the system output
variables do not violate the output constraints under this
control strategy. Meanwhile, we observe from Fig. 8 that the
fluctuation of the error in this case is larger compared with
Case 1, and the system tracking effect is not satisfactory.
This also shows that without hysteresis compensation, the NN
alone does not eliminate the effects caused by backlash-like
hysteresis.
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Fig. 7. Under the proposed control scheme without backlash-like hysteresis
compensation. (a) Tracking performance of x11. (b) Tracking performance
of x12. (c) Tracking errors: z11 and z12. (d) Control input u.

Fig. 8. Tracking error with and without backlash-like hysteresis
compensation.

Fig. 9. With adaptive control. (a) Tracking performance of x11 with adaptive
control. (b) Tracking performance of x12. (c) Tracking errors: z11 and z12.
(d) Control input u.

C. Case 3: Adaptive Control

To demonstrate the superiority of NN control,
an adaptive control scheme is compared in this case.
Fig. 9(a) and (b) shows the ability of the system’s variables

to follow the desired trajectory. Fig. 9(c) shows the variation
of the tracking error of the system. Fig. 9(d) shows the
control input of the system.

Compared with Case 1, the tracking error, in this case,
is larger, indicating that the performance of system output
variables in tracking the desired trajectory is less than an ideal
case, and at the same time, the control input trajectory of the
system is more volatile. From the above results, it can be
shown that the robustness of the system is poor under the
adaptive control.

VI. CONCLUSION

An adaptive NN control was proposed for the uncertain
2-DOF helicopter system with unknown backlash-like hystere-
sis and output constraints. The RBFNN was used to estimate
the uncertainty of the system, and then, the adaptive variables
were developed to address the effects of backlash-like hys-
teresis present in the system. With the BLF technology to deal
with the output constraint of the system, the Lyapunov method
proved that the system was uniformly bounded. Finally, simu-
lations and experiments validated the effectiveness and validity
of the proposed control strategy.
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