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A B S T R A C T

The purpose of this research is to investigate the multi-area economic emission dispatch problem (MEEDP) in
the presence of renewable energy resources (RES) to improve the energy sustainability and climatic benefits.
MEEDP is a multi-objective problem in smart grids, with the purpose of minimizing the operating costs and
emissions of thermal units. RES have made a substantial contribution to greenhouse gases emission control and
environmental sustainability. The integration of RES into conventional grids, which is becoming increasingly
prevalent, spread the research scope of MEEDP and needs to be re-examined. This work considers two
renewable sources (wind and solar) along with thermal plants subjected to significant number of previously
uncombined system level limitations such as power capacity limit, prohibited zones, transmission network
losses, dynamic ramp limits, tie-line limits and multiple fueling options. The operating cost is computed
as summation of predictive and stochastic components. The predictive part is calculated by utilization of
cumulative distribution function for each wind and solar system. A swarm intelligence-based crow search
optimization algorithm (CSOA) is modeled to handle the complex constrained MEEDP with adjusted predictive
part of RES. Six benchmark test systems with multi-dimensional constraints have been chosen to validate the
adaptability and efficacy of the presented approach. Regardless of the complexity of the problem, the proposed
approach provides the best feasible solution with a finer convergence rate. Finally, the simulation results depict
that the integration of the corresponding system constraints gives legitimacy to the system and delivers reliable
output.
1. Introduction

Economic load dispatch (ELDs) plays a major role in the planning
and operation of power system utilities. The ever-growing power de-
mand for industries and domestics purposes has not only increased the
operating costs but has also affected the ecological system of our planet
habitats. This rapid rise in power demand has led to some additional
constraints such as transmission losses and multi-area power shar-
ing making traditional economic environmental load dispatch (EELDs)
problem more complex. The classical target of ELDs was to minimize
only the fuel cost with generation capacity constraints [1,2] through
some analytical techniques such as Newton–Raphson etc. ELDs with
dynamic load demand considering VLEs and price variations due to
the generating network location are studied in [3,4]. These techniques
become ineffective with introduction of some nonlinear constraints
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namely prohibited operating zones (POZs) and multiple fueling op-
tions (MFOs). Sinha et al. [5] proposed evolutionary programming
techniques to tackle the nonlinear limitations of ELDs, but the problem
complexity increased as environmental concerns attracted researchers’
interest. Therefore, the minimization of fuel cost was no more the
only concern and the international environmental agencies put-forward
emission restrictions to utilities and the dispatch problem become
bi-objective.

The authors in [6] presented a squirrel search algorithm to solve
single area [7] as well as complex MEEDP. Adeyan et al. [8] pro-
posed centralized, semi-centralized and decentralized meta-heuristic
approaches for MEEDP. Zare et al. [9] solved MEEDP by a firework
algorithm considering load as hourly variable and proposed a novel
vailable online 19 August 2022
360-5442/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.energy.2022.125178
Received 23 October 2021; Received in revised form 27 July 2022; Accepted 13 Au
gust 2022

http://www.elsevier.com/locate/energy
http://www.elsevier.com/locate/energy
mailto:ijazhere2000@gmail.com
mailto:rehanqau@gmail.com
mailto:abdulbasit_20@pieas.edu.pk
mailto:saddam.malik47@yahoo.com
mailto:ume.habiba92@yahoo.com
mailto:kshong@pusan.ac.kr
https://doi.org/10.1016/j.energy.2022.125178
https://doi.org/10.1016/j.energy.2022.125178
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2022.125178&domain=pdf


Energy 261 (2022) 125178I. Ahmed et al.
Acronyms

MEEDP Multi-area energy emission dispatch prob-
lem

CSOA Crow search optimization algorithm
VLEs Valve-point loading effects
MFOs Multiple fueling options
POZs Prohibited operating zones
ELDs Economic load dispatch
EELDs Economic environmental load dispatch
SSA Salp swarm algorithm
MOSA Multi-objective simulated annealing
RCGA Real coded genetic algorithm
EP Evolutionary programming
ABC Artificial bee colony
DE Differential evolution
GSO Glowworm Swarm Optimization
CQGSO Continuous quick group search optimizer
KHA Krill herd algorithm
OKHA Opposition-based krill herd algorithm
SDE Stochastic coding differential evolution
EMA Expectation–maximization algorithm
MILP Mixed integer linear programming
RES Renewable energy resources
DA Dragonfly algorithm
ALO Ant-lions optimization
ORCCRO Oppositional Real Coded Chemical Reaction

algorithm
BBO Biogeography-based optimization
PSO Particle swarm optimization
GA Genetic algorithm

Nomenclature

𝜔𝑟 Rated power of wind unit
𝛺 Amount of solar irradiance
𝛩 Power temperature coefficient in percent-

age per centigrade
𝜐 Current wind speed
𝑐 Scale factor
𝐶𝑈 Total committed units
𝐸𝑐𝑡 Total emission cost
𝐹𝑐𝑡 Total fuel cost
ℎ Penalty factor
𝑘 Shape factor
𝑁𝑠 Number of solar panels
𝑁𝑧 Number of windmills
𝑁𝑝𝑎𝑟𝑙 Number of cell in parallel
𝑁𝑠𝑟𝑠 Number of cell in series
𝑃𝐷𝐿𝐴 Power demand
𝑃𝑖𝑗 Output power
𝑃𝑁𝐿𝐴 Network losses
𝑅𝑝(𝑠𝑡𝑐) Solar power standard test condition
𝑅𝑝(𝑡) Solar radiation
𝑅𝑟𝑎𝑑.𝑠𝑡𝑐 Solar radiation standard test condition

scheme to design ELDs as a dynamic problem. Hassan et al. in [10],
suggested a Manta Ray foraging algorithm to solve the economic emis-
sion problem. The main drawback associated with the proposed tech-
nique is convergence to local minimum resulting in sub-optimal results.
2

𝑆𝑝,𝑘 Solar power
𝑇𝑀𝐴 Power transfer limits
𝑈𝑎𝑚𝑏𝑡 Ambient temperature of cell
𝑈𝑐𝑒𝑙.𝑠𝑡𝑐 Temperature of cell at standard condition
𝑈𝑐𝑒𝑙 Temperature of cell
𝑈𝑛𝑟𝑚𝑙.𝑡𝑒𝑚𝑝 Normal temperature of cell
𝑍 Area zones
𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗 , 𝜂𝑖𝑗 and 𝛿𝑖𝑗 Emission coefficients
𝑎𝑖𝑗 , 𝑏𝑖𝑗 and 𝑐𝑖𝑗 Input fuel coefficients
𝑓𝑖𝑗 and 𝑒𝑖𝑗 VLEs coefficients
𝐹𝑆𝐶 Solar generation cost
𝐹𝑊𝐶 Wind generation cost

Zou et al. [11,12] solved emission dispatch problem by incorporat-
ing renewable energy sources by means of virus colony optimizer
and obtained trade-off curves between fuel and emission costs. The
method, although effective, does not consider the probabilistic nature
of wind energy and involves high costs with some ecological effects.
A fuzzy compromised with home demand allocation emission dispatch
problem was solved in [13] by incorporating local energy grid sys-
tems. The introduced scheme, however, requires high initial capital
investment. Besides, the emission constraints are also compromised
in above-mentioned schemes. Clearing algorithms such as MILP and
ANNEX generic optimization model for the electrical market are the
subject of several studies in academic literature [14,15].

The authors in [16] suggested a memory-based gravitational op-
timizer for load dispatch but the reported results are shown to be
optimal for cost function with soft constraints only. Rawa et al. [17]
suggested five different optimizers to solve EELDs with traditional
constraints. The presented methodologies are quite inefficient in terms
of computational efficiency and involve high computing costs. Stefano
et al. [18] proposed the adaptation of efficient materials for storage
system of thermal plants but the site occupancy and troubleshooting for
such a system requires special skills. A new crisscross optimizer frame-
work is combined with Pareto multi-objective solver in [19] to obtain
optimal solution of emission and fuel costs. The proposed scheme is
computationally complex and lags in efficient handling of large system
constraints . Chen et al. [20] suggested wind turbines integration with
traditional thermal units to handle the tie-line and spinning reserves
constraints. The integration improved the results by adding a feedback
generation to the existing plants, but the stochastic nature of wind
energy production remains a concern along with inadequate handling
of emission constraints.

Pandit et al. [21] suggested a fuzzy selection based optimizer frame-
work using a differential evolutionary algorithm to solve the economic
emission problem. The presented fuzzy-based scheme lags in terms of
computational efficacy as more iterations are needed for optimized
solution. Xin et al. [22] divided the economic dispatch problem into
small micro grids to handle the emissions and promoted the use of
renewable energy for low carbon development. The micro-grid energy
systems based on renewable energy significantly reduced the carbon
emissions but at increased system cost.

The integration of renewable energy sources involve high costs
and require the special energy storage to balance the demand load of
network with the increase in load. The authors in [23–25] suggested
a particle swarm optimizer framework to solve the multi-area dispatch
problem by considering real power flow and power transfer limits. The
swarm based algorithms pose certain constraints in terms of slow con-
vergence and local minima for high-dimensional search spaces which
lead to increased computational costs and performance compromise.
In [26], a swarm based optimizer is proposed for voltage stabilization.
Lin et al. [27,28] suggested stochastic optimizer for solving the complex
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objective function of MEEDP with limited constraints. The stochastic
algorithms, although feasible, are less accurate as compared to other
approaches and have been avoided for critical energy systems with
restricted computational capabilities.

Renewable systems do pose certain problems such as the production
can never be deterministic as in case of traditional thermal plants
raising the risk of handling capacity constraints. The energy production
in renewable systems is also dependant on solar or wind profiles of area
hence necessitating the region-specific unit designs. Song et al. [29]
presented a cooperative distributed optimization to address the eco-
nomic emission problem that involves the heating and cooling of
natural gas model. The main drawbacks of distributed optimization
are convergence to local minima and requirement for linearization
of non-convex constraints [30]. The authors in [31] presented a se-
cant method to solve the complex objective function of MEEDP. The
proposed scheme, however, does not guarantee convergence of all
constraints and do not ensure boundedness of fitness function error.
Hossein et al. [32] presented a hybrid algorithm to solve combined
heat economic dispatch problem. The suggested algorithm has shown to
perform better but requires accurate parameter selection and involves
higher computational time and iterations for optimal solution.

Concerning the above reported literature, the MEEDP is complex
and practical engineering problem which determines the optimal sched-
ule for generators active power and the exchange of active powers
among different areas under several operational constraints such as
generation–consumption balance, tie-line capacity constraints, genera-
tor output constraints, and transmission losses. Furthermore, there has
been very fewer work done on MEEDP with RES integration, and the
topic has not been thoroughly investigated in the existing literature
for large non-convex test systems to the best of our knowledge, by
encompassing all of the non-convex constraints. Our aim is to inves-
tigate the RES integrated MEEDP with all non-continuous limitations
such as MFOs and POZs along with additional constraints of spinning
reserves and tie-line constraints. In this paper, crow optimization search
algorithm is applied to benchmark real-world thermal plants operating
in different zones. The CSOA framework assists the financial institu-
tions, system operators, and policymakers with variety of ways. To
begin, by systematically pursuing the optimal generation cost, it assists
system operators in providing consumers with affordable, sustainable
electricity service. Additionally by incorporating MFOs limitation, the
framework allows policymakers and financial actors to use readily
available, low-emission fuels such as natural gas, so strengthening the
country economy by reducing its dependency on imported fuel and
protecting the environment.

The details of computing framework are provided in Section 3. Fur-
thermore, our designed strategy based on bio-inspired framework han-
dles this problem for all possible scenarios. The significant highlights
of this investigation are summarized as follows:

• The complex MEEDP objective function is considered with real-
world non-convex constraints. All test systems chosen are bench-
mark test systems and optimal values of emission and cost func-
tion are obtained by handling tie-line and spinning reserves lim-
itations as compared to the SSA-MOSA [33], RCGA [34], EP [6],
ABC [34], EMA [34], DE [34], GSO [35], CQGSO [35], KHA [36],
OKHA [36] and SDE [37].

• The crow search optimization algorithm is employed with rela-
tively straightforward parameter adjustment; knowing probability
and flight path awareness. The proposed scheme attains optimum
results by handling all limitations in multi-dimensional search
space.

• The efficacy and computational performance of presented scheme
is showcased along with convergence rate and stability, see
e.g. SSA-MOSA [33], RCGA [34], EP [6], ABC [34], EMA [34],
DE [34], GSO [35], CQGSO [35], KHA [36], OKHA [36] and
3

SDE [37]. p
• The obtained optimal statistical results show superior perfor-
mance under the contiguous hard constraints. The results are
compared analytically and graphically with other state-of-art
heuristic approaches reported in literature recently, see e.g. SSA-
MOSA [33], RCGA [34], EP [6], ABC [34], EMA [34], DE [34],
GSO [35], CQGSO [35], KHA [36], OKHA [36] and SDE [37].

• The low emission profiles of proposed scheme also provide a
vibrant solution to emission regulatory authorities for developing
a robust solution for energy manufacturing industries.

• The integration of renewable systems with conventional thermal
plants has significant impact in cost and emission reduction. In
this context, a special test system (Test System-IV) is studied. The
analysis in the form of mean cost is compared with [38–44].

The rest of the paper is organized in follows: Section 2 compromises
problem formulation along with system constraints. Section 3 includes
a brief working of optimizer framework. Section 4 contains obtained
results and simulations. Finally the conclusions are drawn in Section 5.

2. MEEDP problem formulation

2.1. Convex MEEDP cost function

The objective of MEEDP is to attain optimum generating power
output distribution for all predefined operating zones with minimal
costs and power shifting among the area zones subject to correlated
constraints. The non-convex cost function of committed generating
units can be represented as follows [45]:

𝐹𝑐𝑡 =
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1
𝐹𝑖𝑗

(

𝑃𝑖𝑗
)

, (1)

𝐹𝑐𝑡 =
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1

(

𝑎𝑖𝑗𝑃
2
𝑖𝑗 + 𝑏𝑖𝑗𝑃𝑖𝑗 + 𝑐𝑖𝑗

)

, (2)

where 𝑎𝑖𝑗 , 𝑏𝑖𝑗 and 𝑐𝑖𝑗 represent the input fuel coefficients of committed
nits of the 𝑗th generator of the 𝑍𝑡ℎ

𝑗 area zone. 𝑃𝑖𝑗 is the output power
f the 𝑗th committed unit in the 𝑍𝑡ℎ

𝑗 area zone. 𝐹𝑐𝑡, 𝐶𝑈 and 𝑍𝑖 represent
he total fuel cost, total committed units and area zone, respectively.

.2. Non-convex MEEDP cost function

The non-convexity in thermal plants is pop up in fuel cost function
ue to the valve opening of steam. All thermal plants have special
echanism for valve opening which directs the super heated dry steam

o turbine units. When these valves are operated, a slight reduction in
ower is induced which produces ripples in cost function curve. This
ffect, known as valve-point loading effect (VLEs), produces increment
n fuel cost curve and mathematically can be represented as follows:

𝑐𝑡 =
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1

(

𝑎𝑖𝑗𝑃
2
𝑖𝑗 + 𝑏𝑖𝑗𝑃𝑖𝑗 + 𝑐𝑖𝑗

)

+ |

|

|

𝑒𝑖𝑗 × sin{𝑓𝑖𝑗 × (𝑃𝑖𝑗(min) − 𝑃𝑖𝑗 )}
|

|

|

. (3)

The addition of sinusoid function on VLEs produces the power loss and
converts the cost function to truly non-convex. Here 𝑓𝑖𝑗 and 𝑒𝑖𝑗 are VLEs
cost coefficients of the 𝑗th committed units in the 𝑍𝑡ℎ

𝑗 area zone.

.3. Renewable energy systems modeling

Predicting variables such as airspeed, sun irradiation, and the re-
ated demand is crucial to the reliability of a power management system
or renewable energy sources, regardless of whether they are connected
o conventional power systems or operating independently. Mathemat-
cal modeling of RES systems for MEEDP is carried out in this section.
he carbon footprint of RES is significantly smaller than that of other
nergy sources like gas, coal, and other fossil fuels. These key factors
ave prompted scientists worldwide to connect RES with conventional

ower systems in order to obtain clean, sustainable and carbon-free
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energy. The precise characterization of RES uncertainty is essential in
stochastic optimizations, and usually the system representation depends
on the modeling-method. As a result, the approaches adopted to model
uncertainty must be carefully chosen. In our work, we employ beta
distribution function and Weibull probability density function to model
MEEDP considering RES. The detail of RES modeling is as follow.

Solar modeling. Solar radiation, environmental temperature, and the
performance parameters of the photovoltaic module all have a sig-
nificant impact on the solar electricity generation. Throughout this
research, we employ the beta distribution function (BDF) to attain en-
ergy output generated, and the mathematical modeling of solar energy
using the BDF is as follows [46]:

𝐹𝛽 (𝛺) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜓 (𝜛 + 𝛶 )
𝜓 (𝜛)𝜓 (𝛶 )

×𝛺𝜛−1(1 −𝛺)𝛶−1

𝑓𝑜𝑟 0 ⩽ 𝛺 ⩽ 1, 𝜛 ⩾ 0, 𝛶 ⩾ 0

0 Otherwise

(4)

where 𝜛 and 𝛶 depict the parameters of 𝐹𝛽 . Now, it is possible to write
the function by utilizing the mean 𝜙 and the standard deviation 𝛬. The
function can be stated as

𝜛 = 𝜙
(

𝜙 (𝜙 + 1)
𝛬2

− 1
)

, (5)

𝛶 = (1 − 𝜙)
((

𝜙 (𝜙 + 1)
𝛬2

− 1
))

. (6)

As previously stated, solar radiation and surrounding temperature are
significant factors influencing solar generation, and these factors can
be modeled as follows.

𝑅𝑝(𝑡) = 𝑁𝑠𝑟𝑠 ×𝑁𝑝𝑎𝑟𝑙[𝑅𝑝(𝑠𝑡𝑐) ×
𝑅(𝑡)𝑟𝑎𝑑
𝑆𝑟𝑎𝑑.𝑠𝑡𝑐

× [1 − 𝛩 × (𝑈𝑐𝑒𝑙 − 𝑈𝑐𝑒𝑙.𝑠𝑡𝑐 )]], (7)

𝑈𝑐𝑒𝑙 = 𝑈𝑎𝑚𝑏𝑡 +
𝑅(𝑡)𝑟𝑎𝑑
𝑅𝑟𝑎𝑑.𝑠𝑡𝑐

× (𝑈𝑛𝑟𝑚𝑙.𝑡𝑒𝑚𝑝 − 20). (8)

Wind modeling. The chaotic nature of wind speed has a significant
impact on the production of wind energy and it is necessary to char-
acterize wind speed properties using the Weibull probability density
function (WPDF), which can be given as follow [47].

𝑊𝑆𝑝𝑑𝑓 (𝜐) =
𝑘
𝑐

( 𝜐
𝑐

)𝑘−1
. exp

(

−
( 𝜐
𝑐

)𝑘
)

(𝜐 > 0) . (9)

By utilization of speed–power curve the generated power can be given
as follows.

𝑊 (P) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝜐 < 𝜐𝑖𝑛 or 𝜐 > 𝜐𝑜𝑢𝑡
𝜔𝑟

(

𝜐 − 𝜐𝑖𝑛
)

𝜐𝑟 − 𝜐𝑖𝑛

(

𝜐𝑖𝑛 ⩽ 𝜐 ⩽ 𝜐𝑟
)

𝜔𝑟
(

𝜐𝑟 ⩽ 𝜐 ⩽ 𝜐𝑜𝑢𝑡
)

(10)

.3.1. Solar cost function
The following mathematical model can be used to compute the cost

f solar energy generation.

𝑆𝐶 =
𝑁𝑠
∑

𝑘=1
𝑅𝑝,𝑘 × 𝐵𝑖𝐺𝑘. (11)

n this case, the cost of solar generation is denoted by 𝐹𝑆𝐶 . 𝑁𝑠 and 𝑅𝑝,𝑘
enote the number of solar panels and powers, respectively.

.3.2. Wind cost function
The following mathematical model is used for computing the cost

f wind power generation.

𝑊𝐶 =
𝑁𝑧
∑

𝑗=1
𝑊𝑝,𝑗 × 𝐶𝑎𝑗 , (12)

In this case, the cost of solar generation is denoted by 𝐹𝑊𝐶 . 𝑁𝑧 and 𝑊𝑝
are the number of wind plants and power, respectively.
4

𝑗

2.4. Non-convex MEEDP cost function with RES

The following mathematical model is used to represent the non-
convex cost function after integration with RES.

𝐹𝑐𝑡 =
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1

(

𝑎𝑖𝑗𝑃
2
𝑖𝑗 + 𝑏𝑖𝑗𝑃𝑖𝑗 + 𝑐𝑖𝑗

)

+ |

|

|

𝑒𝑖𝑗 × sin{𝑓𝑖𝑗 × (𝑃𝑖𝑗(min) − 𝑃𝑖𝑗 )}
|

|

|

+
𝑁𝑠
∑

𝑘=1
𝑆𝑝,𝑘 × 𝐵𝑖𝐺𝑘 +

𝑁𝑧
∑

𝑗=1
𝑊𝑝,𝑗 × 𝐶𝑎𝑗 , (13)

2.5. Non-convex MEEDP emission cost function

The other objective of MEEDP is to restrict the emission discharge
from all committed units by incorporating the equality and inequality
limits of generation. The environmental emission of committed units
can be represented as emission cost function for all operating regions
as

𝐸𝑐𝑡 =
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1
𝐸𝑖𝑗

(

𝑃𝑖𝑗
)

, (14)

𝐸𝑐𝑡 =
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1

(

𝛼𝑖𝑗𝑃
2
𝑖𝑗 + 𝛽𝑖𝑗𝑃𝑖𝑗 + 𝛾𝑖𝑗

)

+ 𝜂𝑖𝑗 exp(𝛿𝑖𝑗𝑃𝑖𝑗 ), (15)

here 𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗 , 𝜂𝑖𝑗 and 𝛿𝑖𝑗 are the emission coefficients of the 𝑗th
enerator of the 𝑍𝑡ℎ

𝑗 area zone. Here 𝐸𝑐𝑡, 𝐶𝑈 and 𝑍𝑗 represent the total
mission cost, total committed units and area zone, respectively.

.6. Non-convex MEEDP formulation based on CSOA

The MEEDP problem can be formulated as a multi-objective prob-
em that consists of non-convex fuel cost function and emission func-
ion as objective goals. The mathematical expression of the combined
EEDP is as follows.

𝑐𝑡 = min(𝐹𝑐𝑡 , 𝐸𝑐𝑡). (16)

bove MEEDP multi-objective function can be converted into a single
ptimization function by means of a penalty factor ℎ. Assigning ℎ = 0
elivers fuel cost function where ℎ = ∞ delivers full emission function.
onsequently, the penalty factor component must have a trade-off
alue. Various methods have been offered [48] for computing the trade-
ff value for the price penalty factor, one of which is the maximum
rice penalty factor.

𝑐𝑡 = min(𝐹𝑐𝑡 , 𝐸𝑐𝑡)

=
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1

[

(𝑎𝑖𝑗𝑃 2
𝑖𝑗 + 𝑏𝑖𝑗𝑃𝑖𝑗 + 𝑐𝑖𝑗 ) +

|

|

|

𝑒𝑖𝑗 × sin{𝑓𝑖𝑗 × (𝑃𝑖𝑗(min) − 𝑃𝑖𝑗 )}
|

|

|

+ ℎ𝑖
(

𝛼𝑖𝑗𝑃
2
𝑖𝑗 + 𝛽𝑖𝑗𝑃𝑖𝑗 + 𝛾𝑖𝑗

)

+ 𝜂𝑖𝑗 exp(𝛿𝑖𝑗𝑃𝑖𝑗 )
]

+
𝑁𝑠
∑

𝑘=1
𝑆𝑝,𝑘 × 𝐵𝑖𝐺𝑘

+
𝑁𝑧
∑

𝑗=1
𝑊𝑝,𝑗 × 𝐶𝑎𝑗 . (17)

he maximum penalty factor can be computed as follows:

𝑖(𝑚𝑎𝑥) =

∑𝐶𝑈
𝑖=1

∑𝑍𝑖
𝑗=1(𝑎𝑖𝑗𝑃

2
𝑖𝑗(𝑚𝑎𝑥) + 𝑏𝑖𝑗𝑃𝑖𝑗(𝑚𝑎𝑥) + 𝑐𝑖𝑗 )

(

𝛼𝑖𝑗𝑃 2
𝑖𝑗(𝑚𝑎𝑥) + 𝛽𝑖𝑗𝑃𝑖𝑗(𝑚𝑎𝑥) + 𝛾𝑖𝑗

)

+ 𝜂𝑖𝑗 exp(𝛿𝑖𝑗𝑃𝑖𝑗(𝑚𝑎𝑥))
,

here 𝑃𝑖𝑗(𝑚𝑎𝑥) is the maximum generation capacity of the 𝑖th unit in the
th zone.
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2.7. MEEDP constraints

The main goals of MEEDP are the optimal allocation of power
transfer in predefined zones and minimization of fuel and emission
costs subject to system constraints. These constraints include power
balance constraint, power loss constraints, tie-line limitation and other
traditional constraints of EELDs such as POZs and MOFs. The mathe-
matical representation of MEEDP associated constraints is developed in
subsequent paragraphs.

2.7.1. Prohibited Operating Zones (POZs)
Thermal power plants possess speed governing and control mecha-

nism for the smooth operation of power delivery. As load increases, the
mechanical rotation of turbine also increases to produce the required
power. However, there are certain system limitations, such as the vibra-
tions on mechanical shaft of turbine due to excessive load, that allow
the generation to operate in some limited zones. The mathematical
expression for the POZs is given as follows:

𝑃min
𝑖𝑗 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝐿𝑖𝑗,1,

𝑃𝑈𝑖𝑗,𝑘−1 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝐿𝑖𝑗,𝑘, (18)

𝑃𝑈𝑖𝑗,𝑛𝑧 ≤ 𝑃𝑖 ≤ 𝑃max
𝑖𝑗 ,

𝑘 = 2,… ......𝑛𝑧.

2.7.2. Capacity constraints
All committed units are allowed to operate within the machine

power capacities hence the power output is bounded by lower and
upper limits. The mathematical expression for MEEDP capacity con-
straints is given as

𝑃min
𝑖𝑗 ≤ 𝑃𝑖𝑗 ≤ 𝑃max

𝑖𝑗 , (19)

here 𝑃min
𝑖𝑗 and 𝑃max

𝑖𝑗 are the minimum and maximum powers delivered
y the 𝑗th generator of the 𝑍𝑡ℎ

𝑗 area zone, respectively.

.7.3. MFOs constraint
Usually the operation of power plants involves the use of multiple

ype of fuel according to market prices and specific heat value. The
FOs have a significant impact on fuel cost curves. It can be noted

hat every fuel type has its own market price and output power. The
athematical expressions for MFOs are provided below.

𝑐𝑡 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1
𝐹𝑖𝑗𝑓 𝑡1

(

𝑃𝑖𝑗
)

=
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1

(

𝑎𝑖𝑗𝑓 𝑡1𝑃
2
𝑖𝑗 + 𝑏𝑖𝑗𝑓 𝑡1𝑃𝑖𝑗 + 𝑐𝑖𝑗𝑓 𝑡1

)

,

.. .. .. .. ..

.. .. .. .. ..

.. .. .. .. ..
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1
𝐹𝑖𝑗𝑓 𝑡𝑛

(

𝑃𝑖𝑗
)

=
𝐶𝑈
∑

𝑖=1

𝑍𝑖
∑

𝑗=1

(

𝑎𝑖𝑗𝑓 𝑡𝑛𝑃
2
𝑖𝑗 + 𝑏𝑖𝑗𝑓 𝑡𝑛𝑃𝑖𝑗 + 𝑐𝑖𝑗𝑓 𝑡𝑛

)

,

(20)

where 𝑓𝑡1 and 𝑓𝑡𝑛 denote fuel type one and fuel type 𝑛 for 𝑍𝑡ℎ
𝑗 area

one, respectively.

.7.4. Network generation balance constraints
Total power from committed units must be able to meet the con-

ected load demand, losses and tie-line limits. The expression for
alance constraint is as follows:
𝑀𝐴𝑖
∑

𝑗=1

(

𝑃𝑖𝑗
)

= 𝑃𝐷𝐿𝑖 + 𝑃𝑁𝐿𝑖 +
∑

𝑀𝐴,𝑀𝐴≠𝑖
𝑇𝑀𝐴𝑖, (21)

here 𝑃𝐷𝐿𝑖, 𝑃𝑁𝐿𝑖 and 𝑇𝑀𝐴𝑖 are the power demand, associated losses of
5

oads network and active power transfer from zone 𝑖 to 𝑧, respectively.
.7.5. Tie-line limit constraint
The power transfer from multi-areas is restricted by tie-line lim-

ts for security purposes whose violation can result in severe system
ontingencies. The mathematical models for these limits are given as

− 𝑇𝑀𝐴𝑖𝑧(min) ≤ 𝑇𝑀𝐴𝑖𝑧 ≤ 𝑇𝑀𝐴𝑖𝑧(max). (22)

2.8. Ramp rate limitation

These limits assess the rate at which a power plant can change to a
different output state of operation depending on machine specification.
As a general rule, it is defined as a unit’s ability to perform at its lowest
and highest levels and expressed in MW/h.

−𝐷𝑅𝑖𝑗 ≤ 𝑃𝑖𝑗,𝑟 (𝑡) − 𝑃𝑖𝑗,𝑟 (𝑡 − 𝜏) ≤ 𝑈𝑅𝑖𝑗 .

. Proposed CSOA framework for MEEDP

The CSOA was first introduced by Askarzadeh et al. [49] to solve
omplex constrained optimization problems in engineering. Nature has
olution for every problem. CSOA is a population based algorithm like
ther swarm optimization techniques which is inspired from intelligent
ehavior of crows. Crows are known as highly intelligent living species
mong birds and they spend their lives in flocks with a social system.
or instance, they have large brain as compared to their brain-to body
ize ratio index. Therefore, crows can easily remember the site locations
nd also warn other flocks in time of any threat or danger. Moreover,
hey have capability to store or hide food reserves like other species
uch as ants, honey bee, etc. They communicate with each other in
very sophisticated way upon retrieval of hidden reserves or under

hreat [50]. The working of CSOA is based on their social behavior
nd actions towards the retrieval of food reserves. They take long
lights to reach the hideout food places or to steal food from their own
pecies. Besides, they disguise other follower crows as precautionary
easures. This novel strategy is the inspiration for CSOA to attain

ptimal solution in search space containing hard constraints [51].
The initializing the CSOA for MEEDP is accomplished by determin-

ng the flock (generators size) and iterations size. For the crow position
, the time iteration can be represented by a vector 𝑌 𝑣,𝑖𝑡𝑟 = (𝑣 = 1,2,
. .N; 𝑖𝑡𝑒𝑟 = 1,2, . . . .𝑣𝑡𝑒𝑟max) where 𝑣𝑡𝑒𝑟max is the maximum number of
terations. In a 𝑑−dimensional space environment with 𝑁 groups, their
eginning positions are randomly distributed. Suppose we have crows
and 𝑤, then two cases arise as follows:

• Case 1: Crow 𝑤 has no information about crow 𝑣 following him.
In this case, the updated position of crow 𝑣 is given as

𝑌 𝑣,𝑖𝑡𝑟+1 = 𝑌 𝑣,𝑖𝑡𝑟 + 𝑅𝑖 × 𝑏𝑙𝑣,𝑖𝑡𝑟 × (𝑚𝑤,𝑖𝑡𝑟 − 𝑌 𝑣,𝑖𝑡𝑟) (23)

where 𝑅𝑖 denotes a uniformly distributed random number be-
tween 0 to 1 and 𝑏𝑙𝑣,𝑖𝑡𝑟 is the flight path taken by crow 𝑣 at instant
𝑖𝑡𝑟. The flight length capability is represented by 𝑏𝑙. If the length
is long, it depicts the global search where smaller value represents
local search.

• Case 2: Crow 𝑤 knows that crow 𝑣 is behind him then 𝑤, select
the random position. The combined representation for Case 1 and
2 is formulated as

𝑌 𝑣,𝑖𝑡𝑟+1 =
{

𝑌 𝑣,𝑖𝑡𝑟 + 𝑅𝑖 × 𝑏𝑙𝑣,𝑖𝑡𝑟 × (𝑚𝑤,𝑖𝑡𝑟 − 𝑌 𝑣,𝑖𝑡𝑟) 𝑅𝑖 ≥ 𝐴𝑃 𝑣,𝑖𝑡𝑟,
Random Position otherwise

(24)

he CSOA keeps a balance of reinforcement and diversification like
ther heuristic approaches and is controlled by a parameter known as
wareness probability (𝑃𝐴). In CSOA, the parameter 𝑃𝐴 is largely re-
ponsible for controlling intensification and diversification. By lowering
he 𝑃𝐴 value, CSOA is more likely to conduct the search in a local search
pace. Therefore, using low 𝑃𝐴 values increases intensity and if the 𝑃𝐴
alue increases, CSOA tends to explore the search space globally.
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Logical steps of CSOA for MEEDP
The implementation of CSOA optimizer framework by extending

[49] for MEEDP is described in the form of following logical steps.

Step 1: The first step is known as initialization. The objective function
f MEEDP along with constraints and decision variables are defined in
his step. CSOA along with its adjustable parameters such as population
ize, maximum number of iterations, flight length of CSOA framework
nd 𝑃𝐴 are also tuned.

tep 2: This step involves the initialization of a time-varying matrix
hat deals with the positioning of designated flocks. Here, every single
ntity in the matrix represents a candidate solution. The initialization
rocedure assumes that the crows have hidden food reserve site at their
nitial position.

𝑙𝑜𝑐𝑘𝑀𝑒𝑚𝑜𝑟𝑦 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚1
1 𝑚1

2 ⋯ 𝑚1
𝑑

𝑚2
1 𝑚2

2 ⋯ 𝑚2
𝑑

⋮ ⋮ ⋱ ⋮
𝑚𝑁1 𝑚𝑁2 ⋯ 𝑚𝑁𝑑

⎤

⎥

⎥

⎥

⎥

⎦

. (25)

tep 3: In this step, fitness of MEEDP objective function is computed
n the basis of each crow position which is updated by inclusion of a
ecision variable to MEEDP objective function.

tep 4: In this step, CSOA generates new positions for the crows. As
entioned earlier in search space, the crows update their positions

ccording to Eq. (24). All committed units in MEEDP obtain new
ositions to attain the objective of MEEDP under associated constraints.

tep 5: The best optimum solution obtained from Step 4 is evaluated
or feasibility. If the solution is in a feasible region with all system
onstraints full-filled, then the crows update the positions.

tep 6: The fitness of MEEDP function for updated position is com-
uted.

tep 7: In this step, birds memory is updated with following mathemat-
cal expression. If the new computed fitness value of MEEDP is feasible
hen its a memorized position and vice-versa otherwise.

𝑤,𝑖𝑡𝑟+1 =
{

𝑌 𝑣,𝑖𝑡𝑟+1𝑓 (𝑌 𝑣,𝑖𝑡𝑟+1) is better then 𝑓 (𝑚𝑤,𝑖𝑡𝑟+1),
𝑚𝑤,𝑖𝑡𝑟 otherwise. (26)

tep 8: To validate the termination criteria, Steps 4 and 7 are repeated
or maximum defined iterations. The optimum feasible solution for
EEDP objective function, individual generation value, costs of fuel

nd emission and tie line powers are reported.

tep 9: After attaining optimal generations, the powers are sent to the
overning unit to attain the ramp-rate constraint. The instructions for
hese limitation can be expressed as follow.

𝑖𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑃𝑖𝑗 (𝑡) 𝑖𝑓 −𝐷𝑅𝑖𝑗 ≤ 𝑃𝑖𝑗,𝑟 (𝑡) − 𝑃𝑖𝑗,𝑟 (𝑡 − 𝜏) ≤ 𝑈𝑅𝑖𝑗
𝑈𝑅𝑖𝑗 𝑖𝑓 𝑃𝑖𝑗 (𝑡) − 𝑃𝑖𝑗 (𝑡 − 𝜏) ≥ 𝑈𝑅𝑖𝑗
−𝐷𝑅𝑖𝑗 𝑖𝑓 𝑃𝑖𝑗 (𝑡) − 𝑃𝑖𝑗 (𝑡 − 𝜏) ≤ −𝐷𝑅𝑖𝑗

(27)

The proposed MEEDP develops in the same manner as the original,
with some alterations. To begin, it adopts a unique mechanism for
determining the location of each crow’s hiding place. Each crow selects
one of the flock’s crows as a destination to follow. Additionally, in
comparison to the original, parameter selections such as flight length
and awareness probability values are updated to produce the most
optimal solutions for real-world multi-objective optimization problems
subjected to a variety of hard constraints.

Computational framework strategy for MEEDP
The pseudocode of CSOA is provided in Algorithm 1. The MEEDP

problem with traditional constraints and tie-line limits is developed
and modeled functions are loaded in CSOA environment. The function
6

evaluation is then computed and termination criteria with performance
indices are obtained in the form of optimum costs values for emis-
sions and fuel with power transfer and tie-lines limits. The traditional
constraints such as POZs and MFOs along with equality and inequal-
ity constraints are also satisfied. The flow chart diagram shown in
Fig. 1 depicts the overall process of constraint handling along with
CSOA parameters. CSOA approach is better than other population-
based metaheuristic approaches like GA, PSO and ant colony optimiza-
tion (ACO) as it uses population in searching the best optimal solution,
applies memory concept for searching and does not stuck in local
minima due to its adaptation for improvement. CSOA tries to discover
optimum solutions of complex constrained optimization problems by
simulating the intelligent behavior of crows and it has many advantages
as compared to other population-based heuristic techniques such as GA,
PSO and brain storm optimization (BSO) with ease of implementation,
a small number of parameters and flexibility [52]. Consequently, CSOA
is suitable choice for solving complicated hard bounded constrained
MEEDP problem with desired accuracy and early convergence, which
was lacking in the existing works.

4. Results and simulations

Algorithm 1: CSOA Pseudo Code For MEEDP
Result: Optimum 𝑃𝑖𝑗 and 𝐸𝑖𝑗 values.
Input: MEEDP objective function equation (17) with all system
constraints from equation (18) to equation (22).
Compute RES generation through equations (4) to (12).
initialization;
Time-varying matrix
Maximum iteration time 𝑖𝑡𝑒𝑟(𝑚𝑎𝑥)
Equation (23) and (24)
Equation (26)
while 𝑖𝑡𝑟 < 𝑖𝑡𝑒𝑟(𝑚𝑎𝑥) do

for Crow(v) belongs to crows
do
Randomly choose a crow.
Compute 𝑃𝐴
Update 𝑌 𝑣,𝑖𝑡𝑟+1 using equation (24)
end for
Check function feasibility
Compute fitness of objective function
Update crow memory by using equation (26)
Update 𝑃𝑖𝑗 using (27)
end while

end

To evaluate the performance of designed CSOA approach, five
benchmark test systems are investigated on the multi-area. The consid-
ered test systems include ten committed units with three area system,
forty committed units with four-area system, a Korean large-scale
power system, five units system integrated with wind and solar gen-
eration networks and five units system with flexible load demand of
24-hours. The efficacy of the proposed scheme is compared with other
novel heuristic approaches recently published in the literature, see
e.g. SSA-MOSA [33], RCGA [34], EP [6], ABC [34], EMA [34], DE [34],
GSO [35], CQGSO [35], KHA [36], OKHA [36], SDE [37], DA [38],
CSA [39], ALO [40], BBO [41], PSO [42] and GA [43]. The CSOA
for MEEDP is executed on Intel celeron(R) N2940CPU@1.83 GHz,
4.0 GB of RAM with MATLAB version R2017b. Three case studies are
examined for mentioned benchmark test systems including the non-
convex associated constraints. The details of case studies for MEEDP
are given below.

• The non-convex fuel cost function of multi-area system is consid-
ered.

• The non-convex emission cost function (greenhouse gases emis-

sion) of multi-area is accounted.
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Fig. 1. MEEDP computational framework flowchart.
Table 1
CSOA parameter setting.
Parameters Test System-I Test System-II Test System-III Test System-IV Test System-V

Dimensions 10 40 140 5 5
Flock size 10 40 140 5 5
Awareness probability 0.00001 0.00001 0.00001 0.00001 0.00001
Number of iterations 200 200 300 200 200
Flight length 2 2 2 2.5 2.5
.

• Both non-convex and competitive bi-objective functions are trans-
formed into a single objective function by introducing penalty
factor as mentioned in Eq. (17) and optimized simultaneously.

• The non-convex fuel cost function (3), along with system con-
straints in Eqs. (18) to (21) is considered.

• A special test system with RES integration in traditional non-
convex cost function.

To achieve the best optimal solution for MEEDP under all constraints,
the parameter selection is provided in Table 1. These parameters in-
clude flight length, number of iterations, flock size and awareness
probability. It is worth noticing that a singularity optimal parameter
setting is chosen for all benchmark test systems.

4.1. Test System-I

This benchmark test system has ten committed units with three
area power system subject to nonlinear contiguous system constraints
such as VLEs, MFOs and system network losses. Input cost coefficient
data with multiple fuel types and VLEs are provided in [34]. The total
load demand and tie-line power flow limitation are 2700 MW and
120 MW, respectively. The Area-1 shares load demand of 50% with four
committed units (1 to 4), Area-2 shares load demand of 25% with three
committed units (5 to 7) and Area-3 shares load demand of 25% with
three committed units (8 to 10) as depicted in Fig. 2.
7

4.1.1. Case Study-I
In this case study, we achieved an optimal solution of non-convex

fuel cost of MEEDP Test System-I by incorporating MFOs along with
other system constraints as presented in Table 2. The optimal cost
acquired by CSOA approach is 644.2474 $∕h. A total of 200 independent
iterations were performed, and COSA attained quality convergence.
The obtained fuel cost by CSOA scheme is compared with other meta-
heuristic techniques SSA [33] 654.6061 $∕h, RCGA [34] 657.3078 $∕h,
EP [6] 655.2031 $∕h, ABC [34] 654.9888 $∕h and EMA [34] 654.7809 $∕h
It is evident, from Table 3, that CSOA approach finds best optimum
solution as compared to other advance approaches. Furthermore, the
convergence for MEEDP cost function via CSOA is more stable and
faster convergence.

4.1.2. Case Study-II
In this case study, we achieved the finest emission rate for Test

System-I as shown in Table 4 along with optimum powers, tie-line and
losses. Its worth highlighting that CSOA finds finest feasible solution
6314.13 kg∕h for emissions as compared to SSA [6], ABC [34] and EMA
approaches. The 200 iterations have been performed and CSOA has
again shown stable convergence. Also the comparison of CSOA for
emission with respect to other state of the art heuristic techniques is
provided in Table 5.
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Fig. 2. Schematic diagram of Test System-I.
Table 2
Optimal dispatch results obtained by CSOA of Test System-I for Case Study-I.

Area Units Fuel type Power generation

1 1 2 224.354
2 1 199.902
3 2 459.852
4 3 236.734

2 5 1 266.217
6 3 230.833
7 1 260.670

3 8 3 248.291
9 1 316.878
10 1 256.265

Tie-line powers T21 106.231
T31 108.251
T32 7.172

Losses Area Load-1 9.21
Area Load-2 6.732
Area Load-3 6.538

Generation cost ($/h) 644.2474
Emission (KG/h) 6447.03

Table 3
CSOA cost comparison with other heuristic approaches, Test System-I for Case
Study-I.

Approach Fuel cost ($/h) Approach Fuel cost ($/h)

ABC 654.9888 RCGA 657.3078
EMA 654.7809 SSA 654.6061
EP 655.203 CSOA 644.2474

4.1.3. Case Study-III
In this case study, we converted MEEDP into a single objective

function according to Eq. (17). The weighting factors are selected
according to the maximum penalty factor. The results show that CSOA
attains feasible solution as compared to other heuristic approaches
shown in Table 6. The obtained non-convex fuel cost and emission
for combined function are 636.4110$∕h and 6420.6 kG∕h, respectively.
Tables 5 7, shows the power distribution of all committed units along
with tie-line power transfers by incorporating all associated constraints
for both non-convex functions.
8

Table 4
Optimal dispatch results obtained by CSOA of Test System-I for Case Study-II.

Area Units Fuel type Power generation

1 1 2 218.240
2 1 194.672
3 2 452.345
4 3 248.579

2 5 1 269.580
6 3 225.660
7 1 250.894

3 8 3 242.926
9 1 332.146
10 1 264.952

Tie-line powers T21 116.597
T31 119.564
T32 45.463

Losses Area-1 0.00
Area-2 0.00
Area-3 0.00

Generation cost ($/h) 644.2474
Emission (KG/h) 6314.10

Table 5
CSOA cost comparison with other heuristic approaches, Test System-I for Case
Study-II.

Approach Emission cost (KG/h) Approach Fuel cost (KG/h)

ABC 6380 SSA 6370
EMA 6370.82 CSOA 6314

Table 6
Comparison of CSOA combined cost and emission results with others heuristic
approaches, Test System-I for Case Study-III.

Approach Fuel cost ($/h) Emissions (KG/h)

ABC [34] 660.4672 6443.2378
EMA [34] 661.0337 6445.5173
SSA-WSA [6] 658.9930 6459.1875
MOSSA [6] 660.2238 6441.1696
CSOA 636.4110 6420.50
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Fig. 3. Schematic diagram of Test System-II.
Table 7
Optimal dispatch results obtained by CSOA of Test System-I for Case Study-III.

Area Units Fuel type Power generation

1 1 2 228.216
2 1 208.352
3 2 433.028
4 3 228.157

2 5 1 232.012
6 3 244.274
7 1 289.512

3 8 3 248.848
9 1 323.424
10 1 264.172

Tie-line powers T21 107.536
T31 109.237
T32 15.585

Losses Area-1 0.00
Area-2 0.00
Area-3 0.00

Generation cost ($/h) 636.4110
Emission (KG/h) 6420.5

4.2. Test System-II

This standard test system consists of forty committed units con-
nected to a four-area power system via tie-lines. We consider various
nonlinear contiguous system constraints such as VLEs and system net-
work losses for the system under investigation. A data set containing
input cost coefficient information as well as other constraints is pro-
vided in [53]. The total load demand for the entire area is assumed to
be 10, 500 MW, with a power transfer limitation of 100 MW on each
of the six tie-lines. Based on the distribution of load demand shown in
Fig. 3, Area-1 shares load demand of 15% with ten committed units
(1 to 10), Area-2 shares load demand of 40% with ten committed units
(11 to 20), Area-3 shares load demand of 30% with ten committed units
(21 to 30), and Area-4 shares load demand of 15% with ten committed
units (31 to 40).

4.2.1. Case Study-I
In this case study, we achieved finest optimal solution of non-

convex fuel cost of MEEDP for Test System-II by incorporating system
9

constraints, and results are presented in Table 8. The finest optimal
cost obtained by CSOA approach is 113 660.59$∕h. The 200 independent
iterations were performed to examine the quality of CSOA convergence.
The obtained fuel cost by CSOA scheme is compared with other meta-
heuristic techniques SSA [33], RCGA [34], EP [6], ABC [34], EMA [34]
and DE [34]. It is evident from comparison that CSOA approach finds
the best optimum solution for MEEDP with finer convergence rate.

4.2.2. Case Study-II
The best emission rate for Test System-II was achieved in this case

study, as shown in Table 8, along with the best powers combination,
tie-line powers, and system loss values for the test system. Again, it
is worth noting that CSOA attains the best possible solution (113 940
tons/h) for emissions as compared to SSA [6], ABC [34] and EMA [34]
approaches. The convergence profile of emission for 200 iterations
reveals that CSOA converged towards optimum solution with finer rate
as compared to existing heuristic techniques presented in [6].

4.2.3. Case Study-III
As part of this case study, we converted MEEDP into a single

objective function based on Eq. (17). The weighting factors are selected
according to maximum penalty mechanism, and the feasible solu-
tions obtained are compared with those obtained by existing heuristic
approaches, as illustrated in Table 9. While, Table 8, shows the opti-
mum distribution of powers for committed load. The non-convex fuel
cost and emissions for the combined function were determined to be
124 330.50$∕h and 116 560.5 tons/h, respectively. The achieved results
for system-II are compared with ABC, EMA, NSGA-II [54], MODE [54],
SSA-WSA [6] and MOSSA [6]. CSOA attains feasible solution with finer
time convergence as compared to other heuristic techniques. Its evident
that CSOA performed well while dealing combined cost and emission
as compared to other heuristic techniques ABC, EMA, NSGA-II [54],
MODE [54], SSA-WSA [6] and MOSSA [6].

4.3. Test System-III

To demonstrate the applicability and efficacy of CSOA towards
practical implementation, a real world large scale Korean power plants
Test System with nonlinear cost function is considered as shown in
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Table 8
Optimal dispatch results obtained by CSOA for Case Studies I, II & III for Test System-II.
Area Units Power generation

Case Study-I
Power generation
Case Study-II

Power generation
Case Study-III

1 1 134.614 103.442 80.959
2 136.773 103.6893 91.624
3 74.551 119.8821 110.122
4 141.279 200.0059 132.589
5 98.747 53.7337 100.002
6 130.003 145.5000 132.304
7 253.308 280.2219 201.965
8 222.419 279.4900 288.007
9 249.342 299.9996 254.479
10 299.997 221.0448 196.762

2 11 286.356 366.2801 335.598
12 295.089 365.7256 301.705
13 492.540 499.9811 499.388
14 170.088 366.1751 344.973
15 465.869 466.3891 432.046
16 432.285 340.4538 472.276
17 440.369 495.9665 306.127
18 447.840 407.7216 385.293
19 463.860 538.6979 479.057
20 515.443 326.4059 531.647

3 21 450.883 473.4471 518.149
22 498.749 526.6789 436.660
23 486.129 458.0370 549.998
24 493.773 404.4211 458.476
25 532.550 416.0825 365.743
26 460.095 464.0562 545.569
27 10.010 33.5355 69.413
28 43.477 52.5359 96.777
29 108.066 83.7142 75.383
30 88.633 69.0575 74.226

4 31 164.124 145.8391 189.999
32 185.186 96.8602 156.275
33 199.122 126.2700 94.961
34 189.982 144.6138 102.346
35 200.000 198.3812 199.999
36 181.00 152.9257 136.941
37 71.859 81.5942 125.222
38 54.870 79.1052 37.977
39 102.959 69.6676 64.954
40 450.663 543.4941 552.009

Tie-line power T12 99.583 51.203 0
T13 54.444 99.573 −13.947
T32 90.433 0 26.367
T41 19.742 −55.083 0
T42 99.745 0 85.675
T43 74.124 93.861 0

Generation cost ($/h) 113 660.5 123 390.5 124 330.50
Emissions (tons/h) 124 050.5 113 940 116 560.5
Table 9
Comparison of CSOA with other heuristic techniques of Test System-II for Case
Study-III.

Computational approach Fuel cost
$/h

Emission
tons/h

ABC 126 480.56 209 285.74
EMA 125 910.69 210 238.19
NSGA-II [54] 125 830 210 950
MODE [54] 125 792 211 190
SSA-WSA [6] 125 760.05 206 705.97
MOSSA [6] 125 591.29 205 965.40
CSOA 124 330.5 116 560.5

Fig. 4. The system consists of total 140 committed units across the
country where 1–40 units are thermal (mostly coal powered), 41–91 are
gas powered plants, 92–111 are nuclear powered plants and 112–140
are oil powered plants. The VLEs and POZs constraints are considered
for selective 12 and 4 committed units, respectively. The input cost
coefficients data along with non-convex constraints is provided in [36]
with load demand of 49,342 MW. The optimum power generated from
all committed units along with non-convex cost solution is provided in
10
Table 10. The obtained non-convex cost solution which is 1 550 606.6$∕h
by CSOA optimizer is compared with existing meta-heuristic tech-
niques SSA [6], GSO [35], CQGSO [35], KHA [36], OKHA [36] and
SDE [37] and tabulated in Table 11. Its worth highlighting that the
fuel cost attained by CSOA is lowest among other reported approaches
which shows the superior performance of the algorithm for large scale
systems.

4.4. Test System-IV

Five thermal power generating plants are integrated with two wind
turbines and two solar PV systems in this test system. To demonstrate
the CSOA adaptability and efficacy, all non-convex system limitations
such as VLEs, MFOs and capacity constraints are included. The maxi-
mum installed capacity for solar PV system is 10$∕MW with bid rate
2.854 MWh, where the total load demand of network is 730 MW. The
traditional thermal power plants can create electricity regardless of
the weather, but RES rely on the climatic strength to generate power,
making it imperative to have an accurate and reliable model for dealing
with the unpredictability of climate circumstances. In this study, we
have used the beta distribution function (4) and Weibull probability
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Fig. 4. Korean power system schematic diagram for Test System-III.
Table 10
Optimum Non-convex cost of Test System-III.

Units Optimum power (MW) Units Optimum power (MW) Units Optimum power (MW) Units Optimum power (MW)

1 118.912 36 438.982 71 307.944 106 884.301
2 178.477 37 150.770 72 423.648 107 918.521
3 169.237 38 137.196 73 384.051 108 893.513
4 182.449 39 573.431 74 438.229 109 972.798
5 137.255 40 649.657 75 441.792 110 910.317
6 144.353 41 7.7938 76 401.104 111 887.118
7 372.561 42 14.025 77 439.328 112 166.979
8 339.095 43 206.103 78 399.944 113 175.328
9 335.731 44 218.238 79 386.897 114 142.862
10 391.234 45 212.744 80 349.261 115 309.485
11 378.554 46 223.171 81 442.603 116 331.658
12 370.543 47 224.3734 82 85.0779 117 310.758
13 504.565 48 223.776 83 228.322 118 124.182
14 508.999 49 237.759 84 196.063 119 144.682
15 333.841 50 189.961 85 138.250 120 168.580
16 477.860 51 356.014 86 260.255 121 248.416
17 449.328 52 221.819 87 274.834 122 10.965
18 389.466 53 400.101 88 266.987 123 42.5056
19 341.923 54 361.016 89 234.003 124 46.667
20 429.543 55 333.069 90 283.220 125 35.774
21 439.042 56 502.699 91 298.048 126 22.256
22 404.543 57 281.586 92 440.113 127 25.5170
23 401.298 58 354.839 93 492.213 128 192.95
24 383.722 59 161.603 94 936.529 129 10.607
25 440.455 60 313.467 95 915.441 130 16.253
26 502.778 61 499.869 96 663.841 131 9.465
27 413.550 62 101.791 97 615.385 132 72.377
28 410.692 63 367.828 98 654.375 133 8.410
29 484.813 64 272.442 99 683.536 134 71.15
30 487.046 65 377.503 100 841.585 135 56.190
31 408.495 66 430.333 101 790.577 136 80.145
32 466.757 67 343.178 102 913.962 137 23.754
33 425.614 68 409.800 103 978.010 138 12.548
34 373.784 69 249.510 104 903.141 139 8.238
35 419.043 70 384.893 105 1015.40 140 35.834
COST ($/h) 1550606.65
density function (9) to model the uncertainty of RES. The wind PDF
is computed using (9) under scaling factor 𝑐 and wind turbine blade
profile shape factor 𝐾. The values of 𝑐 and 𝑣 for the Kings park site are
11
3.23 and 5.8 meters per second, respectively. Once the unpredictability
of the wind has been classified as a stochastic process, the output
power of the wind generator can be measured as a random variable by
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Fig. 5. Solar radiation in Kings Park (Hong Kong).
Table 11
CSOA cost comparison of Test System-III with other heuristic approaches.

Approach Cost ($/h) Approach Cost ($/h)

GSO [35] 1 728 151.16 OKHA [36] 1 560 146.95
CQGSO [35] 1 657 962.72 SDE [37] 1 560 236.85
KHA [36] 1 560 173.88 CSOA 1550606.65
SSA [6] 1 559 818.72 – –

Table 12
Performance analysis of CSOA comparing other approaches Test system-VI.

Methods Generation cost ($/h)
mean cost

Computational time (s)

CSOA 1937.232 11.62
DA [38] 2018.0762 12
CSA [39] 2021.5229 12.6
ALO [40] 2025.8236 14.5
ORCCRO [40] 2046.6344 17.2
BBO [41] 2058.5299 21
PSO [42] 2060.80 25
GA [43] 2073.8957 28

transforming the wind speed into output power. Eq. (10) can be applied
to determine the output power of the wind based on the wind velocity
𝑊𝑃 , and it can be used in wind cost function Eq. (12) to compute
the cost. To account for the uncertainty in the solar cost function, the
solar irradiance is classified as a random variable by using the beta
distribution. Here 𝐹𝛽 (𝛺) is characterized as a random variable of solar
irradiance (kW/m2). To acquire the power from solar panels, we can
apply 𝑅𝑃 ,𝑘 = 𝑅𝑃0 × 𝐹𝛽 (𝛺), which can be applied in the solar cost
function (11) to compute the overall cost. Tables 13 and 14 contain
the RES input data taken from Kings Park Meteorological Station (Hong
Kong Observatory) as shown in Fig. 5, whereas Table 15 contains
fuel coefficient data of thermal units. The integration of RES plays a
vital role in optimizing the overall fuel cost upto 1937.2$∕h. The total
production of powers from thermal unit is 726.0649 MW, whereas wind
turbine produced 0.2 MW and solar production is 4.4 MW. The wind
generated electricity is less as it depends upon the speed of wind which
is less than limitation presented in Eq. (22). The comparison of CSOA
performance with other state of the art heuristic approaches is shown in
Table 12. Fig. 6 shows the CSOA convergence of cost for RES integrated
Test System-IV and it can be seen that CSOA attains optimal cost with
finer convergence rate.

4.5. Test System-V

This test system considers a flexible load demand of 24 h while
considering non-convex cost function. All system limitations such as
MFOs, generation capacity and VLEs are also incorporated to verify
12
Table 13
Wind power units input data.

Units 𝜐𝑖𝑛 𝜐𝑜𝑢𝑡 𝜐𝑟 𝑘 𝑐 𝑤𝑟 𝐶𝑎
1 5 45 15 1.5 15 10 1.25
2 5 45 15 1.5 15 10 1

Table 14
Solar power input data.

Unit 𝜛 𝛶 𝛩 𝑁𝑠𝑟𝑠 𝑁𝑃𝑎𝑟𝑙

1 6.30 3.43 0.043 20 20
2 5.38 5.43 0.043 20 20

Unit 𝑈𝑛𝑟𝑚𝑙.𝑡𝑒𝑚𝑝 𝑈𝑎𝑚𝑏𝑡 𝑈𝑐𝑒𝑙𝑙.𝑠𝑡𝑐 𝑅𝑟𝑎𝑑.𝑠𝑡𝑐 𝑅𝑝(𝑠𝑡𝑐)
1 45.5 20 25 1000 10
2 45.5 20 25 1000 10

Table 15
Thermal units cost input data for Test System-IV.

Unit 𝑎𝑖 𝑏𝑖 𝑐𝑖 𝑒𝑖 𝑓𝑖 𝑝min
𝑖 𝑝max

𝑖

1 0.0015 1.8 40 200 0.035 50 300
2 0.0030 1.8 60 140 0.040 20 125
3 0.0012 2.1 100 160 0.038 30 175
4 0.0080 2 25 100 0.042 10 75
5 0.0010 2 120 180 0.037 40 250

the robustness against time-based demands. Input cost coefficients data
of test system are provided in Table 15, while the comparison of cost
with other advance approaches is tabulated in Table 16. The dynamic
load demand curve is shown in Fig. 8, while the cost curve response
convergence is depicted in Fig. 9. A dynamic load is variable with time
due to fluctuations in the demand, which can cause the frequency-
related effects on a power system. These types of loads exert forces on
a structure or a machine that are often much greater than their static
equivalents. Dynamic loads produce stress on the generation machines,
leading to a more complicated dynamic dispatch problem. Its evident
from Fig. 9, that CSOA again performs efficiently to attain best optimal
cost as compared to other advanced meta-heuristic approaches. The
Fig. 7 shows the optimal allocation of output powers for the flexible
load demand varying from 400 MW to 750 MW. Moreover, it can be
seen from Fig. 9 that CSOA attains convergence with finer time interval.

Additionally, RES penetration in traditional power systems plays
a crucial role, not only in terms of cost savings, but also in terms of
ensuring the quality of energy supply and RES industrial development,
which further creates jobs. The effect is readily apparent at 12 o’clock,
when the load demands of both test systems (IV and V) are about equal,
as illustrated in Fig. 9. Furthermore, as illustrated in the Tables 12 and
16, a significant variation in both costs can be observed. RES integra-
tion also contributes to the development of sustainable energy hubs,
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Fig. 6. CSOA convergence for cost of Test System-IV.
Fig. 7. Optimal power allocation for Test System-V.
mission reduction, and the transition to carbon-free energy. However,
ES also have certain disadvantages. For example, the technology is
till in its infancy, and the current prices of equipment (batteries, solar
ells, and wind turbines) are still prohibitively costly.

. Conclusions

In this paper, CSOA optimizer framework is proposed for large
cale MEEDP integrated with RES systems and subjected to non-convex
ystem constraints. The two highly complex nonlinear conflicting ob-
ective functions namely non-convex fuel cost function and emission
unction are solved to attain optimum solution of operating cost and
mission. The RES penetration over conventional dispatch function
as also strengthened the system sustainability, and has helped in
eduction of greenhouse gases emission and fuel dependency. The
13

esigned scheme of CSOA achieves faster convergence to optimum
Table 16
Flexible load demand cost analysis of CSOA comparing other approaches Test
system-V.

Methods Generation cost ($/h)
mean cost

Computational time (s)

CSOA 12023.04 11.96
DA [38] 2018.0762 12
CSA [39] 2021.5229 12.6
ALO [40] 2025.8236 14.5
ORCCRO [40] 2046.6344 17.2
BBO [41] 2058.5299 21
PSO [42] 2060.80 25
GA [43] 2073.8957 28

solutions while handling POZs, MFOs and losses constraints with tie-

line restrictions. Additionally, by taking into account the multiple
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Fig. 8. Flexible dynamic load demand curve for Test System-V.
Fig. 9. Dynamic cost curve for Test System-V.
fueling, the designed scheme also assists the system operators and
policy makers to utilize most available fuel with lower toxic emission
characteristics. This would not only help in keeping the atmosphere
clean, but also aids to lower the usage of imported fuels which further
helps to stabilize the country economy. Furthermore, considering the
numerical indicators of generation cost and computational efficiency of
presented scheme, CSOA is more robust and supportively for complex
MEEDP then other heuristic approaches reported in literature. Several
practical constraints such as generation limit and load demand are
also tackled to ensure protection of generating system contingencies.
Moreover, this investigation has also provided solution for electric
utilities to efficiently choose the power generating equipment and limit
the toxic air emissions restricted by regulatory authorities such as clean
14
air policies. Three case studies along with a special study with RES
penetration have been considered for solving functions individually and
simultaneously to demonstrate the capability of CSOA .

Despite the fact that this study provides satisfactory dispatch out-
comes, there are some drawbacks. First, CSOA is a centralized approach
and needs huge costly communication networks for adequate opera-
tions. Second, the capital cost for RES infrastructure and technological
advancement is still limited. Third, the uncertainty in RES generations
is not taken into account to its full extent. Therefore, in future we
will incorporate hybrid distributed control systems to handles these
limitations.
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