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Abstract
One of the primary goals in cognitive neuroscience is to understand the neural mechanisms on
which cognition is based. Researchers are trying to find how cognitive mechanisms are related to
oscillations generated due to brain activity. The research focused on this topic has been
considerably aided by developing non-invasive brain stimulation techniques. The dynamics of
brain networks and the resultant behavior can be affected by non-invasive brain stimulation
techniques, which make their use a focus of interest in many experiments and clinical fields. One
essential non-invasive brain stimulation technique is transcranial electrical stimulation (tES),
subdivided into transcranial direct and alternating current stimulation. tES has recently become
more well-known because of the effective results achieved in treating chronic conditions. In
addition, there has been exceptional progress in the interpretation and feasibility of tES techniques.
Summarizing the beneficial effects of tES, this article provides an updated depiction of what has
been accomplished to date, brief history, and the open questions that need to be addressed in the
future. An essential issue in the field of tES is stimulation duration. This review briefly covers the
stimulation durations that have been utilized in the field while monitoring the brain using
functional-near infrared spectroscopy-based brain imaging.

1. Introduction

Non-invasive brain stimulation is one of the most
explored topics of the current era and has recently
become more well-known; the technique has
been applied in clinical and experimental settings.
The concept of brain stimulation has existed for
quite a long time; however, its use in the field of
neuroscience-based research is no older than a dec-
ade (Zaghi et al 2010, Patel et al 2020). Recently, non-
invasive brain stimulation has been used in many
studies, including both patients and healthy subjects.
In this field, there are several different approaches.
Among these techniques, the most commonly used
techniques are transcranial magnetic stimulation
(TMS) and transcranial electrical stimulation (tES)
(Yang et al 2021). tES is further categorized into

transcranial direct current stimulation (tDCS) and
transcranial alternating current stimulation (tACS).

In the case of TMS, the human brain is exposed
to a strong magnetic field for a concise time inter-
val (usually less than a millisecond). A current is gen-
erated in cortical neurons due to the sudden expos-
ure to this strong magnetic field (Hallett 2000). In
the case of tES, a small electrical current (1 mA to
2 mA) is applied to the subject’s scalp (Nitsche and
Paulus 2000, Yaqub et al 2018, 2021). The mem-
brane potential or specific frequencies changes as
soon as a portion of the applied current reaches the
brain (Antal and Herrmann 2016, Vogeti et al 2022).
tES has recently gained popularity upon its safety
in most individuals, because most people can toler-
ate the stimulation (Woods et al 2016, Clark et al
2020, McKendrick et al 2020). Its portability and
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relative inexpensiveness give tES another advantage
over other brain stimulation techniques. The utiliza-
tion of tES ranges from studying the process of change
in the organization of neurons in the normal brain
(Fröhlich et al 2015, Kuo and Nitsche 2015, Prehn
and Flöel 2015, Berger et al 2018) to studying the
neuroplasticity induced by stimulation (Karabanov
et al 2015, Wessel et al 2015, Wang et al 2021). Des-
pite advances made in tES-based non-invasive brain
stimulation, several challenges remain unaddressed.
The most critical challenge is understanding how to
target tES in a specific brain area so that it can effi-
ciently interact with neurons and enhance neuronal
processes. This enhancement can be monitored later
by measuring brain functions during memory, motor
control, perception, and/or attention tasks. Another
main limitation is the lack of studies that suggest the
temporal aspect and brain area specificity, that is,
how long the stimulation period should be and which
brain area is most suitable for stimulation.

A set of neuroimaging modalities exists that
help detects and monitor brain impairments. These
neuroimaging technologies can be divided into invas-
ive, partially invasive, and non-invasive techniques.
Non-invasive brain imaging techniques are preferred
over the other two types because they do not
include any of the risks of surgery, making them
safer to use. Commonly used methods to acquire
brain signals noninvasively include electroenceph-
alography (EEG), functional near-infrared spectro-
scopy (fNIRS), functional magnetic resonance ima-
ging (fMRI), magnetoencephalography, radioactive
tracer-based positron emission tomography (PET),
and gamma emission-based single-photon emission
computed tomography (SPECT) (Nicolas-Alonso
and Gomez-Gil 2012, Ikeda et al 2020, Legrand et al
2020, Tian et al 2020, Khan et al 2022). These tech-
nologies have led to tremendous advancements in the
field of non-invasive neuroimaging. These modalit-
ies can be compared based on their price, portability,
and resolution (temporal and spatial). To this end,
fMRI, PET, and SPECT have the best spatial resolu-
tion; however, these techniques are restricted to the
lab environment because of the size of the equipment
and lack of mobility. Moreover, these modalities are
very prone to motion artifacts, and in the case of PET
and SPECT, there is a risk associated with the use
of radioactive material. In addition, these modalities
have very low temporal resolutions. Although EEG
outperforms all the imaging approaches mentioned
above, with better temporal resolution but poor spa-
tial resolution. One of the major drawbacks of most
techniques discussed above is that none of them can
be used alongside electrical stimulation because these
technologies are prone to electric and magnetic field
disruption. Based on the recent review, functional
MR imaging is being used to benefit tDCS stud-
ies in three different ways: study design, outcome

evaluation at the neural network level, and serving
as potential bio-markers for responsiveness to tDCS
(Esmaeilpour et al 2020).

On the other hand, during the last decade, fNIRS
has proven to be a reliable method for monitoring
the brain during neurostimulation. Human blood
is composed of several different elements, among
which oxygenated hemoglobin (HbO) and deoxygen-
ated hemoglobin (HbR) are most sensitive to light,
in the wavelength between 650 nm and 1000 nm.
When some neuronal activity occurs in the brain,
the local concentrations of HbO and HbR change
due to neurovascular coupling. Therefore, light in
the spectrum above is utilized to measure temporal
changes in the local concentrations of HbO and HbR
(Zafar and Hong 2020). Light is shone through sev-
eral layers of the scalp and skull until it finally reaches
the brain. Some of the incident light is absorbed by
the brain, while some are scattered. This scattered
light is then detected with the help of appropriately
placed detectors on the scalp. Traditional fNIRS sys-
tems utilize two different wavelengths to detect blood
chromophores; however, more than two wavelengths
have also been proposed. Several studies have utilized
fNIRS for brain imaging in which almost all brain
areas have been investigated. A recent study has also
shown that functional connectivity of the brain due to
acupuncture can bemonitored using fNIRS (Ghafoor
et al 2019). Along with monitoring for healthcare,
fNIRS has proven to be a viable tool in develop-
ing brain-computer interfaces to help physically dis-
abled people (Hong and Yaqub 2019, Hong et al 2020,
Khan et al 2020, Khan and Hong 2021, Zafar and
Hong 2018). The field of brain computer interface has
recently gained popularity with the advent of latest
sophisticated classification techniques like neural net-
works (Bennett et al 2021, Oh and Jo 2021, Petrosyan
et al 2021, Sattar et al 2021, Xie et al 2021). A pictorial
depiction of the comparison of the non-invasive ima-
ging modalities is shown in figure 1.

We adopted a search strategy to unveil almost
all research conducted in the fNIRS-tES protocol.
The electronic search was performed in the Web of
Science using logical combinations of the following
keywords: (‘tDCS’ OR ‘transcranial direct current
stimulation’ AND ‘fNIRS’ OR ‘functional NIRS’ OR
‘functional near-infrared spectroscopy’ AND ‘tACS’
OR ‘transcranial alternating current stimulation’).
The research database was searched from inception
to 1 February 2022, with restrictions on studies in
English. Original studies of functional NIRS in com-
bination with tDCS and tACS were included in this
review. Since the pioneer and ongoing work on tDCS
and tACS in combination with fMRI, EEG, or beha-
viorally has been exclusively researched, it was diffi-
cult to avoid some crucial studies within the explan-
ation of tES or where necessary. This study focuses
on the brief review of tES leading to the techniques
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Figure 1. Comparison of different brain imaging modalities on the basis of spatial resolution, portability, and temporal
resolution. MEG: magnetoencephalography, EEG: electroencephalography, fNIRS: functional near-infrared spectroscopy, PET:
radioactive tracer-based positron emission tomography, fMRI: functional magnetic resonance imaging.

and biophysics, followed by a primary focus of the
overview of studies conducted with the fNIRS-tES
protocol. Finally, the shortfalls in the field and future
directions are discussed.

2. Non-invasive tES

The use of electrical brain stimulation in both science
and medicine stretches back to the late 19th century.
The early applications of high-intensity tES (Lang
et al 1969, Toleikis et al 1974) provided the basis for
subsequent studies, suggesting that the application
of weak currents to the scalp may also induce beha-
vioral effects, but without side effects or conscious
awareness of stimulation (Nitsche and Paulus 2001).
The low cost, portability, and potential home applic-
ations of tES have led to a proliferation of human
trials relative to other non-invasive neuromodulat-
ory techniques, such as TMS and ultrasound stimu-
lation (Liu et al 2012, Kasschau et al 2016). tDCS and
tACS are the two most widely described transcranial
electrical current stimulation methods in the literat-
ure (Polania et al 2018). Transcranial random noise
stimulation (tRNS) is also an electrical stimulation
type but rarely applied, compared to tDCS and tACS,
specifically with fNIRS. Different neurophysiological

responses may emerge due to the change in electrical
characteristics. The effects of tDCS/tACS on the brain
guided by fNIRS in combined tES-fNIRS protocols
are the subject of this review.

2.1. tDCS
tDCS is a type of non-invasive brain stimulation
that has been employed in a variety of populations
(Cappon et al 2016b, Berryhill and Martin 2018,
Yaqub et al 2018, Figeys et al 2021). It delivers dir-
ect electrical currents between two electrodes (anode
and cathode), modulating the neuron’s excitability by
changing the potential of the resting neuronal mem-
brane. The change in excitability direction after tDCS
depends mainly on electrode mounting. In contrast,
many studies have recently discovered that stimu-
lation parameters (such as duration, intensity, fre-
quency, the position of the electrode, and control
settings) in addition to tDCS polarity can modu-
late the outcome of the tDCS effect (Horvath et al
2015, Jamil et al 2017). tDCS has been proven to
have beneficial effects in several neurological dis-
orders, such as stroke (Fregni et al 2005, Hummel
et al 2005, Cattagni et al 2019, Doost et al 2019,
Feil et al 2019, Kindred et al 2019, Mazzoleni et al
2019), refractory epilepsy (Meiron et al 2019, Yang
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Figure 2. Pictorial depiction of signals used for tDCS and tACS.

et al 2019), and chronic depression (Fricová et al 2019,
Iannone et al 2019). Other disorders treated using
tDCS include drug cravings (Eskandari et al 2019,
Martinotti et al 2019, Alizadehgoradel et al 2020,
Holla et al 2020, Malandain et al 2020, Verveer et al
2020, Alizadehgoradel et al 2021, Dubuson et al 2021,
Gaudreault et al 2021, Perri andPerrotta 2021, Xu et al
2021c, Pedron et al 2022), fibromyalgia (Andrade et al
2018, Santos et al 2018, Yoo et al 2018, Kang et al 2020,
Arroyo-Fernández et al 2021, Fregni et al 2021,Matias
et al 2022), gambling disorder (Salatino et al 2021),
and traumatic spinal cord injury (Chari et al 2017,
Cortes et al 2017, Hofer and Schwab 2019, Kumru
et al 2020).

2.2. tACS
In 2008, the effects of tACS were first described
frequency-dependent way (Antal et al 2008). Feurra
et al (2011) investigated the effect of tACS on
evoked potentials and discovered that 20 Hz tACS
had a modulatory effect. These findings imply that
tACS has frequency-dependent effects and that the
processes are distinct from tDCS. The existence
of frequency-dependent effects suggests that tACS
may entrain cortical oscillations. The phase and fre-
quency of brain oscillations are altered to follow
the external stimulus when a brain oscillation is
entrained (Helfrich et al 2014, Vosskuhl et al 2015).

The frequency range surrounding a neural oscillator’s
inherent frequency determines whether it follows the
externally produced tACS frequency. Plastic-related
changes in oscillatory brain activity can endure for
a long period following stimulation. The resting-
state observations following tACS were used in addi-
tional and essential physiological studies (Ghafoor
et al 2022). Moreover, tACS can influence neural
oscillations in the brain during mental tasks. The
tACS application allows contact with brain oscil-
lations, allowing for modification of the latter via
a 0.5–2 mA level electric current adjusted to the
rhythms of endogenous oscillations via the scalp.
The effects of tACS on working memory capacity,
perception, multitasking, motor control, and learn-
ing have been studied extensively (Chander et al
2016, Kasten and Herrmann 2017). In tACS, AC sig-
nals need not be sinusoidal but can be rectangu-
lar or even have more complex forms (Herrmann
et al 2013). Examples of an AC signal used in
tACS and a DC signal used in tDCS are shown in
figure 2.

Although the tRNS (Chenot et al 2022) is another
significant non-invasive stimulating approach, the
authors tried to circumvent it because this review
focuses on combined protocol with fNIRS, and no
study of combined fNIRS and tRNS is available in the
literature.
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Figure 3. Comparison of the number of fNIRS-based studies conducted in the past decade that utilized electrical stimulation.

3. Combined fNIRS-tES studies

Different stimulation durations have been used in dif-
ferent brain areas in the field of tES. While utilizing
fNIRS as a brain imaging modality, almost all brain
areas have been monitored to determine the effect of
tES. Although fNIRS is a relatively new technique,
many studies using fNIRS have been conducted to
determine the effectiveness of tES. Figure 3 shows the
number of studies conducted yearly in the last dec-
ade. While conducting these studies, different brain
areas were monitored, as mentioned earlier. There-
fore, depending on the brain area, different analysis
parameters were used to monitor the effectiveness of
tES. Figure 4 illustrates the comparison of different
parameters used in some of these studies that util-
ized tDCS for stimulation. During these experiments,
fNIRS data were sampled at different instances. Some
of these studies focused on the long-term effects of
tES, while others focused on neuronal changes dur-
ing stimulation. Figure 5 gives an overview of the
studies that used different time instances to measure
the hemodynamic response. The brain areas mainly
under focus in fNIRS studies monitoring the effects
of tES include the frontal, occipital, and parietal lobes.
Different stimulation durations were used for each of
these brain areas, as shown in figure 6.

3.1. Studies on frontal region
Studies of the prefrontal cortex (PFC) utilizing fNIRS
began with a study investigating the effect of tDCS of
the PFC (Merzagora et al 2010). In this study, active
stimulation was given to 12 subjects and sham stim-
ulation to 10 subjects for 10 min. The study results

showed that, in comparison to sham stimulation,
anodal stimulation increased the amount of activa-
tion in the PFC. To investigate the effects of tDCS,
a study in 2015 utilized a working memory task to
assess brain activation (Jones et al 2015). The parti-
cipants’ PFCwas stimulated at an intensity of 1.5 mA.
The study results indicate that tDCS can enhance the
cognitive abilities of a person. Jones et al stimulated
the left PFC of 24 healthy subjects to determine the
effect of tDCS on performance in working memory
tasks. The stimulationwas performed for 10min at an
intensity of 1.5 mA. The study concluded that stim-
ulation improved working memory performance. A
study conducted to investigate the effects of tDCS
on drug-craving revealed that tDCS offers a prom-
ising solution for the treatment of relapse prevention
(Kroczek et al 2016). Stephens et al (2016) demon-
strated the effectiveness of tDCS for maintaining cog-
nitive abilities for a long time as we grow older. While
investigating the effects of tDCS on the dorsolateral
PFC and frontotemporal cortex, it was found that
application of tDCS had no significant effect on the
amount of activation in the dorsolateral PFC when
performing verbal frequency tasks (Herrmanm et al
2017). In the same year, a study revealed that although
tDCS affects the activation of the brain in response to
a contraction task, it has no significant effect on the
fatigue indices (Radel et al 2017). A recent study by
Clark and colleagues demonstrated that 18 sessions
of tDCS along with walking rehabilitation are suffi-
cient and safe for older adults. Table 1 summarizes the
studies in the field of fNIRS that utilized tDCS/tACS.

Neuromodulation with tES has the potential to
help people recover a variety of brain functions
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Figure 4. Comparison of the methods used in different fNIRS-based studies to assess the cognitive effects of transcranial direct
current stimulation (tDCS).

Figure 5. Comparison of the different times used for the monitoring of brain behavior.

that have been lost or compromised. Recently,
Yaqub et al (2021) aimed to provide the feasibility of
the proposed closed-loop strategy using the feedback
from targeted functional networks in the prefrontal
cortex. Moreover, the authors discussed recommen-
ded parameters feasible for deploying in the feedback
loop. Moreover, due to the differences in stimula-
tion parameters among studies, such as duration, fre-
quency, intensity, and electrodemontage, and limited
information of the underlying neurophysiological

mechanisms, the exact mechanism of tES-induced
after-effects remains uncertain. Furthermore, due to
electrical abnormalities, the accuracy of EEG data
is compromised during tES. Besides, hemodynamic
alterations during stimulation, particularly during
tACS, are poorly understood. Hybrid fNIRS-EEG-
tES can be used with either tDCS or tACS with
no electro-optic intervention to evaluate the hemo-
dynamic response during electrical stimulation. A
recent combined fNIRS-tES study was conducted,

6



J. Neural Eng. 19 (2022) 041001 K-S Hong et al

Figure 6. Comparison of different brain stimulation durations (d).

which comprehensively investigates the effects of
tDCS and tACS on the PFC using fNIRS and EEG
simultaneously (Ghafoor et al 2022). Another aspect
of this study was checking the placement of high-
definitionmontage to target both left/right PFCs sim-
ultaneously. Using fNIRS-EEG-tES, they observed
enhanced prefrontal activity. In this resting state
study, tDCS and tACS caused significant improve-
ments in mean hemodynamic responses during and
after stimulation periods. When tACS was compared
to tDCS in between-group analyses, the mean hemo-
dynamic responses induced by tACS were a bit lower.
They used tDCS and tACS to illustrate the viabil-
ity of a high-density setup in boosting hemodynam-
ics in both sides of PFCs simultaneously. Further-
more, after tACS stimulation, there was a rise in alpha
band power and a decrease in beta band power. Even
though tDCS is not frequency-specific, it consider-
ably impacted most EEG band powers.

Researchers investigated the neural correlates of
stimulation-induced modulation of the ability to
learn the value of future outcomes and the sequen-
tial choices necessary to achieve them (i.e. sequential
decision-making) (Schommartz et al 2021). They
revealed three findings: (a) an increased dorsolateral
PFC hemodynamic response during the acquisition
of sequential state transitions, (b) a tDCS-induced
increase in the dorsolateral PFC hemodynamic
response, but without accompanying performance-
enhancing effects at the behavioral level and, and (c) a
greater tDCS-induced upregulation of hemodynamic
responses in the delayed reward condition.

Another study was conducted on language pro-
cessing having two aims: (a) whether fNIRS could be
used to detect changes in hemodynamic response in
young adults with developmental language disorder
after anodal high definition (HD) tDCS enhanced
phonological working memory training and (b)
and could be used to identify atypical hemody-
namic responses in these same adults with devel-
opmental language disorder during active spoken

word processing (Berglund-Barraza et al 2020). They
concluded that individual variations in the relation-
ship between behavior and neural patterns in a single
personwith a developmental language disordermight
be established using fNIRS to track individual dif-
ferences in changes in brain activity following work-
ing memory training. Another study was conduc-
ted on language processing having two aims: (a)
whether fNIRS could be used to detect changes in
hemodynamic response in young adults with devel-
opmental language disorder after anodal HD-tDCS
enhanced phonological working memory training
and (b) and could be used to identify atypical hemo-
dynamic responses in these same adults with develop-
mental language disorder during active spoken word
processing (Berglund-Barraza et al 2020). They con-
cluded that individual variations in the relationship
between behavior and neural patterns in single per-
son with developmental language disorder may be
established using fNIRS and track individual differ-
ences in changes in brain activity following working
memory training. Another pioneering tDCS research
examines the influence of multiple active HD-tDCS
interventions on executive functions (Lu et al 2021).
The main results showed that nine anodal HD-tDCS
sessions could improve different aspects of executive
functions. They demonstrated that the enhancement
of cognitive flexibility in the anodal group was signi-
ficantly better than that in the sham group.Moreover,
a Stroop effect-related decrease inHbOconcentration
in the dorsolateral PFC was observed in the anodal
group but not the sham group.

3.2. Studies on parietal, temporal, andmotor areas
Work on motor area of the brain started in 2013
(Muthalib et al 2013). In this study, the motor cor-
tex in 15 healthy subjects was stimulated for 10 min
and the amount of activation due to stimulation was
observed in the PFC. The results of the study showed
that there was no modulation due to tDCS in the
muscle force production that was being monitored
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through PFC activation. In the same year, another
study investigated the effects of tDCS while perform-
ing a wrist flexion task (Khan et al 2013). fNIRS
data were collected while the task was performed
before, during, and after the stimulation (stimulation
period, 15 min). The results from eight healthy sub-
jects indicated that when used with tDCS, fNIRS can
measure insight into how the muscles are affected by
neuroplasticity. A study performed in rats showed an
increase in the hemodynamic response during tDCS,
and the activity started to decrease as soon as the stim-
ulation stopped (Han et al 2014). In this study, the
rats were stimulated for 10 min, whereas the fNIRS
data were recorded during stimulation and 20 min
after stimulation. The authors concluded that the
stimulation parameters must be customized per sub-
ject to achieve the maximum after-effects of tDCS.
While stimulating the left motor cortex, functional
connectivity was compared in five healthy subjects
(Yan et al 2015). This study provided stimulation for
5 min, which is the first study to the best of our
knowledge, to check the comparatively short stimu-
lation duration effect. The results before, during, and
after stimulation were compared. The results indic-
ated that resting-state coherence could be a helpful
tool for calculating the optimal parameters for tDCS
utilization. In the following year, a study conducted
on 32 healthy subjects found a relationship between
tDCS and the learning process (Choe et al 2016). The
subjects were stimulated for 60 min at an intensity of
2 mA.

Takai et al (2016) suggested that changes occur in
blood flow in the case of both anodal and cathodal
tDCS. After stimulating the right primary motor area
in seven healthy subjects for 20 min, the authors con-
cluded that the effect of tDCS is limited to the brain
area under-stimulation and expands to other areas of
the cortex. In the same year, a study was conducted
to investigate the effects of HD-tDCS relative to those
of tDCS stimulation (Gözenman and Berryhill 2016).
The posterior parietal cortex of 34 healthy subjects
was stimulated for 20min. The study results suggested
that in comparison to tDCS, HD-tDCS had a more
significant influence on the groupwithworseworking
memory. Interestingly, participants with better work-
ing memory demonstrated the opposite trend.

In order to improve lower limb strength, postural
sway, and gait speed in patients with Parkinson’s dis-
ease, the motor area in 42 patients underwent stimu-
lation at 2mA for 20min (Hendy et al 2016). The res-
ults of the study demonstrate the effectiveness of the
method. Muthalib et al (2016) extended the work on
HD-tDCS and investigated its effect while perform-
ing sequential figure-tapping tasks. Interesting work
in the same year proposed using a Kalman filter (Sood
et al 2016). This filter was based on estimation using
an autoregressive model. The authors proposed that
this model could keep track of the coupling between
EEG and fNIRS data while tDCS was applied.

Pilot research was conducted to see how a two-
week tDCS therapy affected the cortical hemody-
namics of a knee osteoarthritis cohort as evaluated
by fNIRS (Pollonini et al 2020a). They suggested
that fNIRS is a valid tool for objectively tracking
pain in an ambulatory situation. It might be used
to influence methods for improved tDCS therapy
and design novel tDCS protocols. According to a
finding of another similar study, the neuromodu-
latory intervention considerably reduced pain only
in the active therapy group (Pollonini et al 2020b).
Only the active treatment group demonstrated a sub-
stantial increase in oxyhemoglobin activation of the
superior motor and somatosensory cortices when the
anodal tDCS electrode was placed. Increased activ-
ity in multiple cortical areas during dual-task walk-
ing in older adults may act as a compensatory mech-
anism in another tDCS-fNIRS study (Orcioli-Silva
et al 2021). Moreover, the reduction in M1 activity
following active tDCS + treadmill walking with no
observed gait changes suggest that tDCS improved
neural efficiency.

The effect of M1-tDCS on bimanual motor skill
acquisition and retention was investigated in a longit-
udinal study (Gao et al 2021). The fNIRS technology
was used to record variations in brain activity during
task execution. As the training progressed, they saw
that tDCS reduced the performance errors. Accord-
ing to the trial-to-trial standard deviation analysis,
the tDCS group tended to stabilize performance vari-
ability in performance error and time. After a 4 week
gap, the impact of tDCS on improving performance
accuracy was still there. As a result, tDCS reduced
contralateral M1 and PFC activity while increasing
supplemental motor area. Moreover, the activation of
themiddle PFC and supplemental motor area regions
was negatively correlated with the performance error.

Another study (Conceição et al 2021) was con-
ducted to promote greater positive effects on gait,
cognition, and PFC activity while walking, compared
with a stand-alone session of aerobic exercise (sham
tDCS) in people with Parkinson’s disease. It was
observed that the addition of anodal tDCS over the
PFC to a session of aerobic exercise led to immediate
positive effects on gait variability, processing speed,
and executive control of walking in people with Par-
kinson’s disease. Table 2 summarizes all studies in
fNIRS using tDCS/tACS of all brain areas except the
frontal region.

4. Stimulation durations

The effects of electrode-based tDCS induced plas-
ticity have been found to vary under certain cir-
cumstances. Duration of stimulation is one of the
factors causing the variation in neuromodulatory
effects of tDCS (Vignaud et al 2018). Considering
a rapidly developing amount of tDCS studies, there
is no apparent link between stimulation intensity
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and duration concerning the tDCS response. Early
tDCS investigations employed intensities of up to
1 mA to alter corticospinal excitability in healthy
persons (Yang et al 2021). Increasing tDCS intens-
ity, on the other hand, does not always promote
plasticity; instead, it may reverse the predicted dir-
ection of excitability change for the tested polar-
ity (Batsikadze et al 2013). A thorough evaluation
of anodal tDCS intensities between 0.5 and 2.0 mA
in healthy people demonstrated no changes in cor-
ticospinal excitability regulation (Jamil et al 2017).
Unexpectedly, only stimulation at 1 mA resulted in
the predicted decrease of corticospinal excitability
with cathodal tDCS. Although the ideal stimulation
intensity is unknown, it appears that greater intens-
ities (e.g. 2 mA) are not always more beneficial for
anodal tDCS.

Similarly, the length of stimulation was expanded
from 10 min in initial research to 20–30 min in sub-
sequent investigations to improve therapeutic effic-
acy in patient groups (Nitsche et al 2003, Elsner et al
2016). However, there does not appear to be a dir-
ect link between increased duration and improved
physiologic outcomes. In addition, after 18 min of
continuous application of cathodal tDCS, the after-
effects did not lead to any further excitement, and
with a further increase in stimulation duration, there
was no further improvement (Monte-Silva et al 2010).
Monte-Silva et al (2013) claimed that prolonging
the duration of anodal tDCS to twenty-six minutes
reversed the excitation-to-suppression effects in the
motor cortex. However, plasticity responses were
longer-lasting when two thirteen-minute blocks of
anodal tDCS were separated by twenty minutes of
no stimulation. The intensity and duration of tDCS
stimulation interact with neuronal responses. Greater
than 1 mA stimulation increased corticospinal excit-
ability regardless of stimulation time (i.e. less than
or more than 10 min), but less than 1 mA stimu-
lation increased corticospinal excitability if provided
for more than 10 min (Dissanayaka et al 2017).
Moreover, for example, twenty minutes of stimula-
tion promoted plasticity, but thirty minutes had no
impact (Vignaud et al 2018). Anodal tDCS with less
than 1 mA intensity and ten minutes duration did
not impact corticospinal excitability (Hordacre et al
2021). Plasticity after-effects are modulated by cur-
rent density under the active electrode, although ideal
parameters are unknown. Even though many current
densities have been examined in healthy persons and
patients, there is no consistent evidence supporting
any one parameter.

No doubt, controlling the length of stimulation
is complicated and dependent on several subject-
specific characteristics. The duration of tDCS for a
specific brain area was determined in a resting state
study where a limiting mechanism for the stimula-
tion duration of a diseased brain using functional
connectivity and graph-theoretical parameters was

proposed (Yaqub et al 2021). They examined the
resting-state functional connectivity in the PFC after
10min of HD-tDCS stimulation to see how it affected
the right prefrontal cortex. The averaged HbO sig-
nal was used to build correlationmaps that quantitat-
ively quantify the resting-state functional connectiv-
ity after preprocessing the collected fNIRS data to
eliminate noise from various sources. The findings
revealed a high correlation between several combin-
ations of channels that may be considered correlated.
Based on the connectivity percentage across chan-
nels, the functional brain network for the entire PFC
was partitioned into subnetworks. The independent
short-range links of the right and left hemispheres
containing connections within a hemisphere, long-
range networks with links between the channels of
the right and left hemispheres, and the whole PFC
network including short- and long-range connections
were investigated based on network theory proper-
ties. The results reveal that when the stimulation time
is increased, the functional networks in the brain
are enhanced. During the first 7 min, the region of
interest improved brain state considerably. However,
there was no discernible alteration in the brain state in
the last 3 min of stimulation. Consequently, it is safe
to conclude that the brain’s gains were near saturation
and that more stimulation should be avoided to limit
overdosage. The proposed neurofeedback approach
may be used to regulate the stimulus duration.

5. Open questions

Based on the literature, certain essential points need
to be considered. These significant points include:
(a) the number of participants required to conduct
the study, (b) the exact brain region where stimula-
tion has to be given, (c) the brain region that will be
used as a reference during stimulation, (d) the polar-
ity of the stimulation, (e) whether the study will be
blinded, (f) the amount of current to be delivered to
subjects, (g) how long stimulation will last, (h) how
many brain stimulation sessions will be given, and (i)
what will be the assessed variables. All these variables
need addressing and be set as a benchmark for fur-
ther studies. Some prominent methods that may act
as breakthroughs in the field are discussed below.

5.1. Hybrid imaging-based approach
The excitable membranes of the brain tissue super-
pose the electric currents in the extracellular medium
during neural stimulation and create a potential on
the scalp (i.e. EEG). It has been shown that neur-
onal activity is closely linked to cerebral blood flow
and the consequent supply of glucose via the neur-
ovascular link, both spatially and temporally. On
the other hand, fNIRS can capture hemodynamic
responses, allowing continuous surveillance of cereb-
ral oxygen and blood flow. The authors proposed
the fusion of EEG and fNIRS data as a method for
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Figure 7. Proposed feedback control strategy for deep brain transcranial electrical stimulation.

more efficient online monitoring during stimulation.
Multivariant machine learning methods (Shin et al
2018) can also be used to fuse multimodal neuroima-
ging functional data. For fNIRS, the individualized
physical MRI model includes optical properties, such
as the absorption and scattering coefficients of the
various types of tissue, and explains the transport
of photons through the tissues. Functional diffuse
correlation spectroscopy and diffuse optical tomo-
graphy extend fNIRS by overlapping high-density
(Giovannella et al 2018, Yaqub et al 2020) measure-
ments, which provides increased spatial precision in a
three-dimensional perspective. For closed-loop con-
trol of multimodal imaging, connectivity needs to be
analyzed in real-time for multi-channel tDCS in the
source space (Yaqub et al 2018, 2021, Ghafoor et al
2022).

In future work, we propose using temporal inter-
ference for deep brain stimulation, as shown in
figure 7 (Grossman et al 2017, 2018). Although tech-
niques such as HD-tDCS have shown prominent res-
ults in cases of focal stimulation, deep brain stimu-
lation may be the best option to achieve long-lasting
effects. With the help of deep brain stimulation, the
high risks of surgery can be avoided to reach the sub-
cortical areas of the brain. In addition, one of the
most prominent advantages of deep brain stimula-
tion using tES is cost-efficiency. Further, the authors
believe that targeted stimulation is possible with the
help of deep brain stimulation, which might improve
results. Alongside this, the design of a method to set a
standard for the stimulation duration is a goal for the
future. Instead of the hit-and-trymethod, the authors
believe that specific criteria for selecting the best suit-
able stimulation duration are a need of the era that
will be addressed in future studies.

5.2. Issues concerning artifact removal
When captured during tACS, the EEG signal is pol-
luted by a substantial electrical disturbance. However,
this setup is sufficient to show that tACS is respons-
ible for developing brain oscillations explicitly. The

reduction of artifacts is necessary for the online
analysis of the effects of tACS. The perfect solu-
tion is to distinguish between artifacts and physiolo-
gical signals. Each of the oscillations (or harmonics)
should be analyzed at the frequency of the stim-
ulation. With these approaches, one key question
remains unanswered: Can a small remaining entity
from entrained brain activity be discerned reliably
based mainly on EEG data? It is also difficult to eval-
uate online neural responses at the same frequency
using tACS stimulation (e.g. increases in alpha oscilla-
tions during 10 Hz tACS stimulation). Studies should
target frequencies far from the frequency of stimula-
tion and its harmonics.

In humans, the EEG records of the frequency
band 1–15 Hz are influenced by cardiac activity and
the blinking of the eye (Gebodh et al 2017, Noury
and Siegel 2017). This effect is most pronounced in
the frontal areas. In addition, the subject’s movement
should be avoided, and stimulation electrodes should
be carefully placed so that they do notmove. The issue
of motion artifact can be catered to by using fNIRS as
a brain-imagingmodality. As fNIRS is less susceptible
to motion artifacts than EEG, it provides an avenue
to avoid motion artifacts in the first place. Also, the
advantage of fNIRS over EEG is that there is no inter-
ference between tES and fNIRS signals, which is not
the case in EEG. Usually, the EEG analyses are per-
formed before and after the stimulation period, as the
supplied current during the stimulation period causes
significant noise in the measured EEG signals. How-
ever, fNIRS is free from this issue as it is not subjected
to optoelectrical interference.

5.3. Repetitive stimulation
The discovery of increased tDCS effectiveness with
repeated stimulation over days is significant in
neurorehabilitation. The effects of repetitive tACS
have also been briefly explored by (Hsu et al 2019),
who showed that tACSwith a 1min intersession inter-
val (i.e. duration of two adjacent tACS) improved
multitasking performance. Therefore, repeated daily
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stimulation will prove to be the most effective
stimulation protocol in the foreseeable future. The
value of the stimulation interval has not yet been illus-
trated. This issue is of significant concern and needs
to be addressed in future studies. One way to achieve
this is with the implementation of modern machine
learning techniques to estimate the amount of stim-
ulation to be delivered depending on person (Hong
et al 2018, Ahamdipour et al 2021, Benrabah et al
2021, Xu et al 2021a, 2021b). Furthermore, the spe-
cific areas that result in the best cognitive improve-
ments when stimulated must be determined.

5.4. Safety and tolerability
tDCS at 1 mA requires larger electrodes than those
used for EEG to prevent skin burns. The experi-
ments were painful for subjects when the applied
current reached 3 mA (Furubayashi et al 2008). It
can also be interpreted as a natural security defense
against higher strength stimulation, although animal
studies show the method itself is considered secure
(Liebetanz et al 2009). Additional parameters have
been used to enhance physiological comparability
and protection criteria. A recent comparative study
(Ghafoor et al 2022) of tACS/tDCS with fNIRS
concluded the following: (a) there were no severe
adverse effects in either scenario of stimulation (tDCS
or tACS), (b) except for fatigue and tingling, no
difference was seen in between-stimulation condi-
tion comparisons for any adverse effect, (c) tingling
was statistically higher in tACS than in tDCS, (d)
the tACS group had more fatigue than the tDCS
group. Moreover, practically everyone in the tACS
group experiencedmoderate to severe phosphene and
bumping symptoms. This effect might be caused by
the stimulation/return electrodes in the PFC being so
close to the eyes. Participants in the tDCS group, on
the other hand, reported no phosphene impact.

6. Conclusion

After providing an overview of what has been
achieved in the field of fNIRS-tES, it can be con-
cluded that a meticulous and refined understand-
ing of the physiological response to tES will enhance
the experimental protocols for experiments based on
neurostimulation. This will aid in the production
of substantially consistent results. For future studies,
another open question that needs attention is whether
the electric field attenuated by tES that reaches the
human brain directly affects neuronal networks. The
authors believe that the tES approaches will contrib-
ute to significant advances in human neuroscience. In
addition, the permanence of the effects generated by
these experiments should be determined. Once the
optimal stimulation duration for tES is decided and
a suitable paradigm is developed, tES and fNIRS will
aid in developing complete theories regarding brain
networks and functions.
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