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Data-driven Modeling and Adaptive Predictive Anti-swing Control of
Overhead Cranes
Gyoung-Hahn Kim, Mahnjung Yoon, Jae Young Jeon, and Keum-Shik Hong* �

Abstract: This study investigates a novel data-driven model and an adaptive predictive anti-swing control law
for overhead cranes. As an alternative solution to the physics-based modeling approach, a data-driven modeling
framework is formulated using the feedforward neural network and extreme learning machine, approximating the
nonlinear functional mapping between the system inputs and outputs. Using the proposed data-driven modeling
approach, the complete input-output behavior, including the dynamics associated with sensors and actuators, is cap-
tured from experimental data. After converting the data-driven model to a state-space form, an adaptive predictive
anti-swing control law is developed using the empirical model. To compensate for the modeling discrepancy re-
sulting from abrupt parameter variations, an online parameter adaptation law for updating the data-driven model is
further developed. Thus, accurate bridge/trolley positioning and rapid swing suppression are realized in ordinary
and uncertain operating conditions. The asymptotic stability of the error dynamics and the boundedness in the esti-
mated parameters are analyzed using the Lyapunov technique. Finally, three types of experiments are performed to
verify the effectiveness of the proposed modeling and control methods.

Keywords: Adaptive control, anti-sway control, crane control, data-driven modeling, overhead crane.

1. INTRODUCTION

This paper discusses an anti-sway control problem of
an overhead crane (commonly called a bridge crane, see
Fig. 1). The overhead crane, which consists of a travel-
ing bridge spanning the gap and a lifting component, is
widely utilized to move steel ladles and other metals from
one location to another. To improve the crane productiv-
ity, the heavy load suspended by the multi-wire hoisting
system is required to be transferred in a quick manner.
However, the quick manipulation of the crane can generate
large payload swings, causing a serious safety issue. Ad-
ditionally, the unwanted load oscillations at the target po-
sition certainly incur unfavorable delays during crane op-
erations. Therefore, this paper aims to develop an appro-
priate control strategy for suppressing the payload swings
at the target position, which consequently solves the im-
portant technical issue limiting the operational efficiency
of the overhead crane.

Various anti-swing control methods for industrial
cranes have been extensively studied over the past decades
[1–20]. Among the different types of control schemes, the

Fig. 1. Overhead crane (https://weeklysafety.com/blog/ov
erhead-cranes).

most typical approach, which has been widely adopted
in practical applications, is to plan the optimal trajecto-
ries of the trolley by minimizing the residual swing of
the load at the target position. Such trajectory planning
can be achieved by thoroughly analyzing the relation be-
tween the trolley motion and the payload swing [1,2]. The
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input-shaping control is an open-loop control method in
which a series of shaped command profiles are generated
to move the trolley while assuring the minimal payload
sway [3–6]. Partial feedback linearization control is used
to establish a simplified closed-loop control system using
coupling effects [7,8]. Sliding-mode control is strongly
preferred to enhance the robustness of the crane system
against parameter uncertainties [9–11]. Additionally, as
an advanced method, adaptive control methods have been
adopted for industrial crane systems [12,13]. Passivity-
based control schemes are recommended when accurate
kinetic and potential energies can be derived [14,15].
Recently, control problems of cranes with input nonlin-
earities have attracted significant attention, for example,
input saturation [16] and input dead-zone [17]. Moreover,
several other control methods have been successfully ap-
plied to crane systems for the sway suppression of the
payload, which include delayed feedback control [18],
boundary control [19], and intelligent control [20].

Basically, the dynamic models of overhead cranes can
be developed using two approaches, that is, a physics-
based approach (i.e., Newton’s law or the Lagrange equa-
tion) and a data-driven approach (an empirical model).
In the existing works, the physics-based crane models
were widely adopted for control system design. This is
because the physics-based approach is known to be ex-
tremely useful in terms of analyzing the controller with in-
sight regarding the underlying physics, particularly when
designing a prototype controller for the first time. There-
fore, up to now, the control problems of various overhead
cranes have been addressed using physics-based models
[21–27]. For instance, the modeling and control problem
of a three-dimensional (3D) crane was discussed in [21].
In the case that the payload is very large and therefore
the distance from the hook to the payload cannot be ne-
glected, a double-pendulum effect should be considered in
the control system. For this issue, in [22], the enhanced-
coupling adaptive control was developed in consideration
of the double-pendulum swing model. In [23], the mod-
eling and vibration control of a flexible overhead crane
bridge was discussed by investigating the deflection of the
main beam of the gantry crane under the load. To deliver
the large/heavy cargo cooperatively using two overhead
cranes, a new mathematical model and nonlinear anti-
swing control were proposed in [24]. Because the working
environments are usually complex, the emergency brak-
ing problem has become an important issue for overhead
crane applications. To ensure safety and avoid an accident
such as collisions, the control problem of simultaneous
payload swing suppression and trolley braking was solved
in [25]. To avoid serious product damage in constrained
operating conditions, the model predictive control was de-
veloped in [26]. Concerning the measurement system of
the overhead crane, the use of visual tracking technology
rather than physical encoders was introduced in [27].

Although the existing control methods for overhead
crane systems are workable, the following issues and as-
pects need to be further improved. i) Due to the underactu-
ated property of the crane system (i.e., the degrees of free-
dom of the system are larger than the number of control in-
puts), most existing methods need a model transformation
technique enabling the effective coupling between the ac-
tuated motion (i.e., the trolley motion) and the unactuated
motion (i.e., the swing motion). For this issue, knowledge
of the underlying physics is inevitably required in the con-
trol formulation. ii) A lot of time and effort is typically re-
quired to find out reliable parameters in the mathematical
model, which can describe the complex dynamic behav-
ior of the overhead crane systems well. Also, the model
tuning process in consideration of the modeling uncertain-
ties and input nonlinearities stemming from the complex
mechanical structures and electrical components becomes
another task.

To address the aforementioned issues regarding
physics-based modeling and its controller design, one
of the promising alternatives is a data-driven approach,
which involves determining the model structure and pa-
rameters using experimental data. However, until now,
data-driven modeling and anti-swing control problem has
not been studied in the literature. One of the main reasons
lies in the fact that it is difficult to obtain a simple structure
to facilitate the control design process while guarantee-
ing high prediction accuracy for nonlinear underactuated
overhead crane systems. Therefore, the lack of data-driven
modeling and anti-swing control for the overhead crane
greatly motivates this research.

This paper investigates the data-driven modeling and
adaptive predictive anti-swing control method of overhead
cranes. First, using the input and output data acquired
from the appropriate excitation signal, the neural network-
based data-driven model with the extreme learning ma-
chine is established. Then, with the data-driven model
converted into the state-space form, an adaptive predic-
tive anti-swing control is formulated using online model
learning. Finally, extensive experimental results obtained
from the scale-down overhead crane are provided to vali-
date the effectiveness of the proposed modeling and con-
trol scheme.

Because the overhead crane system is a typical under-
actuated mechanical system, the data-driven modeling and
control method developed in this study can be applied
to various underactuated mechanical systems exhibiting
similar dynamic properties. In other words, provided that
informative data can be obtained for the considered un-
deratuated systems, the mathematical modeling, and the
subsequent control design can be performed in a simi-
lar manner without thorough background knowledge of
the underlying physics. Furthermore, the proposed mod-
eling and control scheme can be extended to deal with the
challenging control problems such as the state-constrained



2714 Gyoung-Hahn Kim, Mahnjung Yoon, Jae Young Jeon, and Keum-Shik Hong

control problem by establishing the constrained optimiza-
tion problem in the proposed control formulation [28,29].
Therefore, the results in this paper have values in both the-
ory and practice.

The contributions of this paper are summarized as fol-
lows: i) As an alternative model to the physics-based
crane dynamic modeling, a novel data-driven modeling
approach is proposed using the feedforward neural net-
works. In contrast to the physics-based method, the pro-
posed modeling method does not require unrealistic as-
sumptions (i.e., mass-less rod, no friction, etc.) about the
system behavior. Moreover, the complete input-output be-
havior including the dynamics associated with sensors and
actuators are captured in the experimental data. Conse-
quently, the time-consuming effort on the model valida-
tion can be saved. ii) A new adaptive predictive anti-swing
control is developed by means of the proposed data-driven
model. By introducing the online parameter adaptation
law, the data-driven model is updated to compensate for
the model discrepancy resulting from the abrupt parameter
variations, which cannot be considered in the offline data-
driven modeling process. Therefore, the proposed anti-
swing control method based on the data-driven model is
very effective for both ordinary and uncertain operating
conditions.

The remainder of this paper is organized as follows: In
Section 2, the data-driven model of the overhead crane
system is developed. In Section 3, the adaptive predictive
anti-swing control is designed based on the data-driven
model. The experimental results are provided in Section
4. Conclusions are given in Section 5.

2. DATA-DRIVEN MODELING

Fig. 2 shows a schematic of the typical overhead crane
system. Here, XYZ denotes the fixed coordinate sys-
tem and XtYtZt denotes the trolley coordinate system that
moves along with the trolley. The bridge girder spanning
two runway beams moves along the Xt (travel) direction,
and the trolley moves on the girder in the Yt (traverse)
direction. Based on the coordinate systems, the position
of the trolley system is defined as (x,y,0). In addition,
δ and θ are the swing angles, which indicate the rota-
tional angles of the load along the Xt and Yt-axis in the
trolley coordinate system, respectively. On the crane dy-
namics, because the system inputs (i.e., trolley driving
forces) and the system outputs (i.e., system state informa-
tion) are available through the measurement systems, the
data-driven modeling scheme can be realized. Considering
that the crane system is a highly nonlinear and underactu-
ated dynamic system, the nonlinear autoregressive form
with an exogenous input (NARX) is adopted in this study
for the data-driven modeling

y(k+1) = fNARX(u(k), u(k−1), · · · , u(k−nu +1),

Fig. 2. Schematic of a overhead bridge crane.

y(k), y(k−1), · · · , y(k−ny +1)), (1)

where u(k) ∈ Rm and y(k) ∈ Rn are the system inputs and
outputs, respectively; nu and ny represent the number of
past input and output samples respectively; m and n indi-
cate the dimensions of the inputs and outputs, respectively.
In (1), the augmented input vector can be defined as fol-
lows:

x(k) = [u(k), u(k−1), · · · , u(k−nu +1),

y(k), y(k−1), · · · , y(k−ny +1)]T

∈ Rñ=mnu+nny . (2)

The measurement sequence of the crane system can
then be converted into the form of N arbitrary distinct sam-
ples, which is given as

{(x1, y1), · · · , (xN , yN)} ∈ (χ, ξ ), (3)

where χ ∈ Rñ=mnu+nny and ξ ∈ Rn.
In the context of the nonlinear system identification, the

above sample form is used to approximate the nonlinear
function mapping in (1), and the future output of the sys-
tem can be predicted by means of the identified model.
In this study, in order to develop the data-driven model
of the overhead crane in an effective manner, the general-
ized single-hidden layer feedforward networks (SLFNSs)
with Ñ number of hidden nodes and activation function
g(x) (typically a sigmoidal function) is introduced for the
unknown function approximation. This is mathematically
given as follows:

x̂(k+1) = ŷ(k+1) = fDATA(x(k))

=
Ñ

∑
i=1

βig(wi · x(k)+bi), (4)

where wi = [wi1, wi2, · · · , wiñ]
T is the weight vector con-

necting the ith hidden node and the input nodes, βi = [βi1,
βi2, · · · , βin]

T is the weight vector connecting the ith hid-
den node and the output nodes, and bi is the threshold of
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the ith hidden node. wi · x j denotes the inner product of wi

and x j. The data-driven model in (4) can be rewritten in a
compact form, which is given as follows:

x̂(k+1) =W T g(W T
r x(k)+br), (5)

where

Wr =


w11 w12 · · · w1ñ

w21 w22 w2ñ
...

. . .
...

wÑ1 wÑ2 · · · wÑñ


T

, br =


b1

b2
...

bÑ

 ,

W =


β11 β12 · · · β1n

β21 β22 β2n
...

. . .
...

βÑ1 βÑ2 · · · βÑn

 .
It should be noted that input weights of Wr are chosen at
random and output weight matrix W is determined an-
alytically using Moore-Penrose generalized inverse (see
[30,31] for more details). Consequently, the neural net-
work in (5), which is optimized by the algorithm called
the extreme learning machine, can work as a universal ap-
proximator for the unknown crane dynamics.

To facilitate the control design, the mathematical model
given in (5) is transformed into a state-space form us-
ing neural network linearization. Because the nonlinear
mapping function in (4) satisfies the continuously differ-
entiable and globally Lipschitz condition, the data-driven
model can be linearized around any operating point x0
(particularly, the equilibrium point). The Jacobian matrix
∂ fDATA/∂x can be obtained as follows:

∂ fDATA

∂x

∣∣∣∣
x=x0

= ϒW T ∂g
∂x

∣∣∣∣
x=x0

, (6)

where

ϒ = diag{(xmax,1−xmin,1)/2, · · · , (xmax,n−xmin,n)/2},

∂g
∂x

∣∣∣∣
x=x0

=


∂g1/∂x1 ∂g1/∂x2 · · · ∂g1/∂xñ
∂g2/∂x1 ∂g2/∂x2 ∂g2/∂xñ

...
. . .

...
∂gÑ/∂x1 ∂gÑ/∂x2 · · · ∂gÑ/∂xñ


x=x0

,

∂gi

∂x j
=

2Wr( j, i)Ω

(xmax, j− xmin, j)(1+Ω)2 ,

Ω = e−{Wr,i
T [2((x−xmin)/(xmax−xmin))−1]+br,i},

where Wr,i indicates the ith column of Wr and br,i repre-
sents the ith elements of br and x j indicates the jth ele-
ments of x and Wr( j, i) denotes the entry in the jth row ith
column of Wr.

In this study, by assuming that the state variables of
the crane system (i.e., displacement, velocity, swing an-
gle, and angular velocity) are measurable, the input and

state vectors at time k are considered as u(k) = [ux uy]
T

and x(k) = [x vx y vy δ vδ θ vθ ]
T for nu, ny = 1. Then,

the one-step-ahead prediction model of the overhead crane
in a discrete-time state-space form can be obtained as fol-
lows:

x(k+1) = ADATAx(k)+BDATAu(k),

y(k) =Cx(k), (7)

where C = I8×8 and the data-driven system matrices
ADATA ∈ R8×8 and BDATA ∈ R8×2 are derived by partition-
ing the Jacobian matrix as follows:[

∂ fDATA

∂x

∣∣∣∣
x=x0

]
8×10

= [B8×2 |A8×8 ] . (8)

Remark 1: The equilibrium state means that the crane
system is at a stable configuration, that is, the velocities
of the trolley and bridge girder, together with swing an-
gle and angular velocity, are all zero, no matter where the
trolley and bridge are located. This condition is reasonable
and fits the actual property of crane systems [26]. There-
fore, the equilibrium state in (6) is defined as x0 = [0 0
x0 0 y0 0 0 0 0 0]T , in which x0 and y0 are the initial
positions of the trolley and bridge girder, respectively.

3. ADAPTIVE PREDICTIVE ANTI-SWING
CONTROL

In this section, an adaptive predictive anti-swing control
will be designed. The design objective is to find the opti-
mal future control actions, which transport the payload to
the desired position with minimal residual vibrations. To
begin with the proposed control design, let us consider the
performance index function given as follows:

J = (Y −Y ∗)T Q̃(Y −Y ∗)+UT R̃U, (9)

where Y = [y(k+1), y(k+2), · · · , y(k+Np)]
T is the future

output matrix, Y ∗ = [y∗(k+1), y∗(k+2), · · · , y∗(k+Np)]
T

is the desired future output, U = [u(k+1), · · · , u(k+Nc)]
T

is the future input matrix, Np is the size of the predic-
tive horizon, Nc is the size of the control horizon satis-
fying Nc ≤ Np, Q̃ = diag(Q8×8, · · · , Q8×8) ∈ R8Np×8Np is
the weighting matrix for tracking errors between the pre-
dicted output and the set-point signal, and R̃ = diag(R2×2,
· · · , R2×2) ∈ R2Nc×2Nc is the control weighting matrix. Us-
ing the obtained data-driven model in (7), the future out-
put y(k+ i), i = 1, · · · , Np in (9) can be further described
as follows:

y(k+1) =CADATAx(k)+CBDATAu(k),

y(k+2) =CA2
DATAx(k)+CADATABDATAu(k)

+CBDATAu(k+1),
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y(k+3) =CA3
DATAx(k)+CA2

DATABDATAu(k)

+CADATABDATAu(k+1)

+CBDATAu(k+2),
...

y(k+Np) =CANp
DATAx(k)+CANp−1

DATABDATAu(k)

+CANp−2
DATABDATAu(k+1)+ · · ·

+CANp−Nc
DATA BDATAu(k+Nc−1).

(10)

To facilitate the controller design process, (10) can be
rewritten in the following compact matrix form.

Y = Fx(k)+ΦU, (11)

where F = [CADATA, CA2
DATA, · · · , CANp

DATA]
T , and

Φ =


CBDATA 0 0

CADATABDATA CBDATA 0
CA2

DATABDATA CADATABDATA CBDATA
...

...
CANp−1

DATABDATA CANp−2
DATABDATA CANp−3

DATABDATA

· · · 0
· · · 0
· · · 0

...
· · · CANp−Nc

DATA BDATA

 .

Then, by substituting (11) into (9), and after some simpli-
fication, we obtain the following simplified cost function

J =UT (ΦT Q̃Φ+ R̃)U +2UT
Φ

T Q̃Fe(k). (12)

To drive the state of the system to the desired state, the
controller is designed by minimizing the above index
function. Let ∂J/∂U = 0. The solution becomes

U =−(ΦT Q̃Φ+ R̃)−1
Φ

T Q̃Fe(k). (13)

Now, the system control input at the present time instant k
is obtained as

u(k) = KTU, (14)

where K ∈ R2Nc×2 represents the auxiliary vector with the
following expression.

K = [I2×2 02×2 · · · 02×2]
T .

When the next sample period arrives, the more recent mea-
surement is taken to form (10) for calculating the new se-
quence of the control signal in (13). By repeating these
steps, the payload can be transported to the final position
with minimal swings.

Remark 2: The control law in (13) corresponds to the
state feedback control within the framework of predictive
control. Therefore, the prediction accuracy of the data-
driven model is important for achieving the satisfactory
control performance. Under the conditions of persistent
excitation (i.e., plentiful information of the amplitude and
frequency within the excitation input signals), the data-
driven model is effective to capture the dominant dynamic
characteristics of the crane system with the desired degree
of prediction accuracy [32,35–37]. However, such persis-
tent excitation cannot be easily guaranteed in practice, and
unexpected parameter variations in the crane system can
occur during the operation. For this reason, an online pa-
rameter adaptation algorithm is developed in this study.

Let Ξ(k) be the instantaneous prediction error for the
prediction output ψ = g(W T

r x(k) + br) and the real out-
put y(k), the parametric error equation can be obtained as
follows:

Ξ(k) = y(k)−W T
ψ(k) =W ∗T

ψ(k)−W T
ψ(k)

= W̃ T
ψ(k), (15)

where W̃ = W ∗ −W indicates the parametric error ma-
trix between the true model parameter matrix W ∗ and the
output weight matrix W . Then, the data-driven model ob-
tained offline can be updated by the following law pro-
posed

W (k+1) =W (k)+ΓG(ψ(k)ΞT (k)), (16)

where ΓG = diag(ΓG1, · · · , ΓGÑ)∈RÑ×Ñ is the update gain
matrix for the parameter adaptation algorithm.

Theorem 1: The parameter update law given by (16)
guarantees that the estimated output ŷ(k) converges to the
actual output y(k) and the weight matrix W converges to
a constant matrix W ∗, respectively. This also guarantees
that the online model predictions are bounded as long as
the system output is bounded.

Proof: Let us consider the following Lyapunov function
candidate

V (W̃ ) = tr(W̃ T
Γ
−1
G W̃ ), (17)

where tr represents the trace of a matrix. Then, one can
obtain the following results.

∆V (W̃ ) =V (W̃ (k+1))−V (W̃ (k))

= tr(W̃ T (k+1)Γ−1
G W̃ (k+1))

− tr(W̃ T (k)Γ−1
G W̃ (k))

= tr(−2W̃ T (k)ψ(k)ΞT (k)

+Ξ(k)ψT (k)ΓGψ(k)ΞT (k))

= tr(−2Ξ(k)ΞT(k)+Ξ(k)ψT(k)ΓGψ(k)ΞT(k))

=−2Ξ
T (k)Ξ(k)+Ξ

T (k)Ξ(k)ψT (k)ΓGψ(k)

=−2Ξ
T (k)Ξ(k)+Ξ

T (k)ψT (k)ΓGψ(k)Ξ(k)
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=−Ξ
T (k)ΛΞ(k), (18)

where Λ = 2−ψT (k)ΓGψ(k). Now it can be concluded
that V (k+ 1)−V (k) ≤ 0 if Λ > 0 or 0 < λmax(ΓG) < 2.
This implies that V (W̃ )≥ 0 is non-increasing, and we have

∞

∑
k=0

(V (k+1)−V (k)) =−
∞

∑
k=0

Ξ
T (k)ΛΞ(k)

⇒
∞

∑
k=0

Ξ
T (k)ΛΞ(k) =V (0)−V (∞)< ∞. (19)

Additionally, if Λ > I is satisfied

∞

∑
k=0

Ξ
T (k)Ξ(k)≤

∞

∑
k=0

Ξ
T (k)ΛΞ(k)< ∞. (20)

Therefore, Ξ(k) ∈ L2 and (W (k+ 1)−W (k)) ∈ L2 ∩L∞.
Finally, using Barbalat’s lemma [33], lim

k→∞

Ξ(k) = 0,

lim
k→∞

W (k+1) =W (k).
(21)

From (21), Theorem 1 is proven. �
As long as the estimated output ŷ(k) converges to the

actual output y(k) and the system matrices ADATA and
BDATA are stabilizable, it is noted that the stability of
the closed-loop system with the proposed predictive anti-
swing control is ensured by properly setting the control
parameters Q and R [34].

Remark 3: The control horizon Nc is chosen to be less
than (or equal to) the prediction horizon Np. With too short
prediction and control horizons, the closed-loop predictive
control system can become unstable. For the closed-loop
stability and desired performance, the tuning parameters
Q and R are typically designed such that the closed-loop
system ADATA−BDATAKT (ΦT Q̃Φ+ R̃)−1ΦT Q̃F becomes
stable. Such tuning parameters also need to be determined
such that the condition number κ(ΦT Q̃Φ + R̃) is suffi-
ciently small because the large condition number for a
long prediction horizon results in the numerical instabil-
ity. For tuning the update gain matrix ΓG in the parame-
ter adaptation algorithm, the condition 0 < λmax(ΓG) < 2
should be satisfied to guarantee the boundness of the on-
line model predictions. In this paper, based on the afore-
mentioned tuning guideline, the control parameters for the
best performance are obtained by trial and error upon sev-
eral experiments.

In summary, when new data measurements are made
during the task, the weight matrix obtained with offline
training data is updated first using the adaptation law in
(16). Then, after transforming the updated model into the
state-space form by applying (6), the predictive anti-swing
control law in (13) is recomputed to minimize the J(e)
based on the updated data-driven model. This control task
is repeated for every new sampling period until the con-
trol objective is achieved. Finally, The proposed control

Algorithm 1: Algorithm for the adaptive predictive anti-
swing control based on the data-driven model.
Input: The data-driven model in (5) and (7)
Select the initial and target positions of the crane system
1: While (Crane positioning and anti-swing uncompleted)

do
2: The control signal by (14) is sent to the crane
3: The bridge/girder move to the target position
4: calculate:
5: The parameter adaptation algorithm by (16)
6: The Jacobian matrix by (6)
7: The updated data-driven model by (7)
8: The control input by (11)-(13)
9: end calculate
10: Update the control system
11: end while

method using the adaptation law is summarized in Algo-
rithm 1.

4. EXPERIMENTS

In this section, a series of experiments were performed
to show the effectiveness of the proposed method. As
shown in Fig. 3, a scale-downed overhead bridge crane,
which is capable of emulating a real overhead crane sys-
tem, was used to validate the proposed data-driven mod-
eling and control method. The experimental platform was
composed of the control part (including the control PC and
DAQ board), the actuation part (including DC motors with
the motor driver), the measurement part (i.e., encoders),
and the mechanical part (mainly composed of a girder, a
bridge, and a payload connected to the hoisting rope). The
system parameters (i.e., the payload mass m, bridge mass
Mx, girder mass My, and rope length l) of the self-built
overhead crane platform are as follows:

Fig. 3. Experimental testbed.
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m = 0.73 kg, Mx = 3 kg, My = 1.72 kg, l = 0.32 m.
(22)

and the sampling period Ts is 0.05 s.

4.1. Data-driven model development
Owing to the underactuated nature of the crane system,

the dynamic behavior of the overhead crane is dominated
by the coupling dynamics between trolley movements and
payload swings. Thus, the driving force of the trolley is
considered as the main control input for both the trolley
and bridge dynamics and payload swing dynamics. In the
experiment, an amplitude-modulated pseudo-random bi-
nary signal (A-PRBS) was chosen as the input to the trol-
ley driving system to construct the data-driven model. This
signal was generated from the pseudo-random binary sig-
nal (PRBS) by assigning random amplitudes to each step,
which is significantly effective to obtain plentiful but not

computationally high demanding information about the
dominant dynamic characteristics in terms of the nonlin-
ear system identification [35–37]. Therefore, in this study,
all data for the model development was obtained by the
excitation signal (i.e., A-PRBS) given in Fig. 4.

In developing the data-driven crane dynamics with the
proposed modeling method, a SLFNs with 30 hidden neu-
rons was established to capture the underlying physics.
All acquired data were normalized to lie between [−1,
+1] before determining the output weight matrix. Then,
the data-driven model given in (5) and (7) were derived
utilizing the normalized input and output data. The one-
step ahead output predictions of the developed data-driven
models with the input data are given in Fig. 5 by compar-
ing them with the original output data. As can be seen
in the results, the complex dynamic behavior of the over-
head crane system was well described by the data-driven
models with high prediction accuracy. Furthermore, it is

Fig. 4. Input excitation signal for nonlinear system identification (A-PRBS).

Fig. 5. One-step ahead predictions of the data-driven crane model.
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clear that sufficient prediction performance was also guar-
anteed even after the neural network linearization. Conse-
quently, the experimental results illustrate that the predic-
tion model based on the data-driven modeling approach
can be exploited for the control design.

4.2. Control experiments
Using the developed data-driven crane model, a series

of control experiments were performed to validate the fea-
sibility and robustness of the proposed adaptive predic-
tive anti-swing control law. The control parameters in the
present control scheme were selected as follows:

Q = diag(3, 0, 4, 0, 1, 0, 1, 0),

R = 0.01× I2×2,

ΓG = 0.03× I30×30,

Nc = 15, Np = 15, (23)

which were used (i.e., do not require retuning) in all ex-
periments. Then, three groups of experiments were imple-
mented.

Experiment 1: The main purpose of Experiment 1 was
to demonstrate the control performance of the predic-
tive anti-swing control law using the obtained data-driven
model (without online parameter adaptation). Therefore,
the experimental scenario was established in the follow-
ing two cases:

Case 1 (nominal system parameters): Experimental
conditions were set the same as the data-driven model de-
velopment (i.e., m = 0.73 kg and l = 0.32 m).

Case 2 (uncertain system parameters): The payload
mass 0.73 kg was replaced by the mass of 1.4 kg (approx-

imately 200% increases from its nominal value), and a
time-varying rope length (i.e., the hoisting rope was short-
ened from 0.32 m to 0.15 m) was considered instead of the
constant rope length.

The corresponding experimental results are shown in
Fig. 6. As shown in Fig. 6(a), when the experimental sit-
uations were the same as those of the data-driven mod-
eling, the predictive anti-swing controller could drive the
bridge and girder to the target positions within 2 s, with no
payload oscillations at the final positions. However, the
experimental results given in Fig. 6(b) indicate that the
control performance of the predictive controller could be
degraded for the case of different experimental conditions
(i.e., changed payload mass and time-varying rope length).
Particularly, the payload oscillations in the traverse direc-
tion were not suppressed by the designed controller, and
thus the girder position could not be kept at the target posi-
tion because the girder, which was lighter weight than that
of the bridge, is more affected by the payload swings re-
sulting from the increased moment of inertia. Therefore, it
was found from the experimental results that the predictive
anti-swing control based on the data-driven crane model
was significantly effective for the nominal system, but the
prediction anti-swing control required to be adapted on-
line against the abrupt parameter variations which cannot
be considered in the offline data-driven modeling.

Experiment 2: The second experiment was performed
to demonstrate the effectiveness of the proposed adaptive
predictive anti-swing control using the data-driven crane
model. For the comparative results to Experiment 1, the
proposed controller was implemented for the same un-

Fig. 6. Experiment 1 – Predictive anti-swing control without online parameter adaptation: (a) nominal system parameters
(Case 1) and (b) uncertain system parameters (Case 2).
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Fig. 7. Experiment 2 – Proposed adaptive predictive anti-swing control against the parameter uncertainties: (a) crane
responses and (b) online parameter estimation.

certain parameter conditions (i.e., changed payload mass
and time-varying rope length). The experimental data are
given in Fig. 7(a). As compared to Fig. 6(b), it is not dif-
ficult to find that the satisfactory control performance has
been achieved, which indicates that the proposed method
has good robustness in terms of payload mass and rope
length variation. Meanwhile, the 2-norm of the output
weights Wx and Wy are drawn in Fig. 7(b), which are al-
ways bounded and finally converge to constant values.
Therefore, by updating the prediction model with the on-
line parameter adaptation algorithm (16), the control per-
formance of the proposed anti-swing control method was
improved against the parameter uncertainties.

Experiment 3: To evaluate further the control perfor-
mance and the robustness in harsh operating conditions,
the third experiment was conducted by considering the pa-
rameter uncertainties and the external disturbances simul-
taneously. The uncertain parameters were consistent with
those in Experiments 1 and 2, and the payload was pushed
manually to imitate external disturbances such as acciden-
tal collisions. During the experimental process, the ampli-
tudes of the external disturbance occurring at 17 s were
approximately ‖δ‖max = 0.42 rad and ‖θ‖max = 0.35 rad.
From the results in Fig. 8(a), one can conclude that the
proposed method is still robust against both the parame-
ter uncertainties and external disturbances. Moreover, Fig.
8(b) clearly shows that the proposed adaptive predictive
anti-swing control can actively interact with the distur-
bances through the online output weight estimations in the
data-driven model.

5. CONCLUSION

An anti-swing control of overhead crane systems has
been considered as a challenging control problem due to
the high nonlinearity and underactuation in the crane dy-
namics. Most reported methods for the overhead crane
systems utilized physics-based modeling and robust feed-
back control, which requires broad and significant back-
ground knowledge on the underlying physics of the crane
system. As a promising alternative solution to the physics-
based modeling and control approaches, a novel data-
driven modeling scheme and adaptive predictive anti-
swing control were proposed in this study. Based on the
feedforward neural network and learning scheme called
the extreme learning machine, the effective data-driven
model of the overhead crane was developed to describe the
complex input-output dynamic behaviors. Subsequently,
an adaptive predictive anti-swing control law was devel-
oped using the obtained data-driven prediction model. In
the control scheme, a parameter adaptation law for updat-
ing the data-driven model was introduced to the control
system to make it more effective in both ordinary and un-
certain operating conditions. The stability of the estima-
tion errors and boundedness was analyzed using the Lya-
punov method. The extensive experimental results verified
that the proposed data-driven modeling and adaptive pre-
dictive anti-swing control method were effective for ac-
curate bridge/trolley positioning and payload swing sup-
pressions. Our future work will focus on extending the
proposed data-driven modeling and control method to the
state constrained control problem of the overhead crane.
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Fig. 8. Experiment 3 – Proposed adaptive predictive anti-swing control in a harsh operating condition: (a) crane responses
and (b) online parameter estimation.
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